Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 20-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the higher symmetries and construct the general solution for a hyperbolic system of equations. We also obtain the explicit formula for the solution of Goursat problem.
Keywords: symmetries, integrals.
Mots-clés : Goursat problem
@article{UFA_2013_5_3_a2,
     author = {Yu. G. Voronova and A. V. Zhiber},
     title = {Symmetries and {Goursat} problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$},
     journal = {Ufa mathematical journal},
     pages = {20--27},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/}
}
TY  - JOUR
AU  - Yu. G. Voronova
AU  - A. V. Zhiber
TI  - Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$
JO  - Ufa mathematical journal
PY  - 2013
SP  - 20
EP  - 27
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/
LA  - en
ID  - UFA_2013_5_3_a2
ER  - 
%0 Journal Article
%A Yu. G. Voronova
%A A. V. Zhiber
%T Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$
%J Ufa mathematical journal
%D 2013
%P 20-27
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/
%G en
%F UFA_2013_5_3_a2
Yu. G. Voronova; A. V. Zhiber. Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 20-27. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/