Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 20-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the higher symmetries and construct the general solution for a hyperbolic system of equations. We also obtain the explicit formula for the solution of Goursat problem.
Keywords:
symmetries, integrals.
Mots-clés : Goursat problem
Mots-clés : Goursat problem
@article{UFA_2013_5_3_a2,
author = {Yu. G. Voronova and A. V. Zhiber},
title = {Symmetries and {Goursat} problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$},
journal = {Ufa mathematical journal},
pages = {20--27},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/}
}
TY - JOUR
AU - Yu. G. Voronova
AU - A. V. Zhiber
TI - Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$
JO - Ufa mathematical journal
PY - 2013
SP - 20
EP - 27
VL - 5
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/
LA - en
ID - UFA_2013_5_3_a2
ER -
Yu. G. Voronova; A. V. Zhiber. Symmetries and Goursat problem for system of equations $u_{xy}=e^{u+v}u_y$, $v_{xy}=-e^{u+v}v_y$. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 20-27. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a2/