Wiener's theorem for periodic at infinity functions with summable weighted Fourier series
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 140-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we define a Banach algebra of periodic at infinity functions. For this class of functions we introduce the notions of a Fourier series, its absolutely convergence and invertibility. We obtain an analogue of Wiener theorem on absolutely convergent Fourier series for periodic at infinity functions whose Fourier coefficients are summable with a weight.
Keywords: Banach space, slowly varying at infinity functions, periodic at infinity functions, Wiener theorem, absolutely convergent Fourier series, invertibility.
@article{UFA_2013_5_3_a11,
     author = {I. I. Strukova},
     title = {Wiener's theorem for periodic at infinity functions with summable weighted {Fourier} series},
     journal = {Ufa mathematical journal},
     pages = {140--148},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a11/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Wiener's theorem for periodic at infinity functions with summable weighted Fourier series
JO  - Ufa mathematical journal
PY  - 2013
SP  - 140
EP  - 148
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a11/
LA  - en
ID  - UFA_2013_5_3_a11
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Wiener's theorem for periodic at infinity functions with summable weighted Fourier series
%J Ufa mathematical journal
%D 2013
%P 140-148
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a11/
%G en
%F UFA_2013_5_3_a11
I. I. Strukova. Wiener's theorem for periodic at infinity functions with summable weighted Fourier series. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 140-148. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a11/

[1] Kakhan Zh. P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976, 203 pp.

[2] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatlit, M., 1963, 121 pp.

[3] Bochner S., Fillips R. S., “Absolutely convergent Fourier expansion for non-commutative normed rings”, Ann. of math., 43:3 (1942), 409–418 | DOI | MR | Zbl

[4] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. matem., 61:6 (1997), 3–26 | DOI | MR | Zbl

[5] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. matem. zhurn., 38:1 (1997), 14–28 | MR | Zbl

[6] Groechenig K., “Wiener's lemma: theme and variations. An introduction to spectral invariance and its applications”, Applied and Numerical Harmonic Analysis, Birkhaeuser, Boston, 2010, 60–63

[7] Kaluzhina N. S., “Medlenno menyayuschiesya funktsii, periodicheskie na beskonechnosti funktsii i ikh svoistva”, Vestnik VGU. Seriya: Fizika. Matematika, 2010, no. 2, 97–102

[8] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, SMFN, 9, 2004, 3–151 | MR | Zbl

[9] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Matem. zametki, 52:2 (1992), 17–26 | MR | Zbl

[10] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1(409) (2013), 77–128 | DOI | MR | Zbl