Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 127-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space of entire functions we study an interpolation problem with multiplicity by the functions from a closed subspace which is invariant in respect to the operator of differentiation. The discrete set of the nodes for the interpolation with multiplicity is located on the real axis in the complex plane. The proof is based on the passage from the subspace to its subspace consisting of all series of exponentials converging in the topology of uniform convergence on compact sets. We obtain a criterion for the solvability of the interpolation problem with real nodes having multiplicity by series of exponentials in the terms of location of exponents of exponentials.
Keywords: entire function, interpolation with multiplicity, series of exponents, ideal, Fischer representation.
@article{UFA_2013_5_3_a10,
     author = {S. G. Merzlyakov and S. V. Popenov},
     title = {Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis},
     journal = {Ufa mathematical journal},
     pages = {127--140},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a10/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
AU  - S. V. Popenov
TI  - Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis
JO  - Ufa mathematical journal
PY  - 2013
SP  - 127
EP  - 140
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a10/
LA  - en
ID  - UFA_2013_5_3_a10
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%A S. V. Popenov
%T Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis
%J Ufa mathematical journal
%D 2013
%P 127-140
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a10/
%G en
%F UFA_2013_5_3_a10
S. G. Merzlyakov; S. V. Popenov. Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 127-140. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a10/

[1] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968, 279 pp. | MR

[2] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 1, Mir, M., 1953, 346 pp. | MR

[3] Meril A., Yger A., “Problèmes de Cauchy globaux”, Bull. Soc. Math. France, 120 (1992), 87–111 | MR | Zbl

[4] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986, 455 pp.

[5] Shapiro H. S., “An algebraic theorem of Fischer, and the holomorphic Goursat problem”, Bull. London Math. Soc., 21 (1989), 513–537 | DOI | MR | Zbl

[6] Meril A., Strupp D. C., “Equivalence of Cauchy problems for entire and exponential type functions”, Bull. London Math. Soc., 17:5 (1985), 469–473 | DOI | MR | Zbl

[7] Henrici P., Applied and computational complex analysis, v. 2, A Wiley-Interscience Publication, 1977, 662 pp. | MR | Zbl

[8] Rubel L. A., “Some research problems about algebraic differential equations”, Trans. Amer. Math. Soc., 280:1, 43–53 | DOI | MR

[9] Rubel L. A., “Some research problems about algebraic differential equations. II”, Illinois Math. Soc., 36:1 (1992), 659–681 | MR

[10] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR

[11] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982, 240 pp. | MR | Zbl

[12] Napalkov V. V., Nuyatov A. A., “Mnogotochechnaya zadacha Valle Pussena dlya operatorov svertki”, Matem. sb., 203:2 (2012), 77–86 | DOI | MR | Zbl

[13] Napalkov V. V., Popenov S. V., “Golomorfnaya zadacha Koshi dlya operatora svertki v analiticheski ravnomernykh prostranstvakh i razlozheniya Fishera”, Dokl. RAN, 381:2 (2001), 164–166 | MR | Zbl

[14] Napalkov V. V., “Kompleksnyi analiz i zadacha Koshi dlya operatorov svertki”, Trudy matem. instituta imeni V. A. Steklova, 235, 2001, 165–168 | MR | Zbl

[15] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[16] Merzlyakov S. G., “Invariantnye podprostranstva operatora kratnogo differentsirovaniya”, Matem. zametki, 33:5 (1983), 701–713 | MR | Zbl

[17] Muggli H., “Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten”, Comment. Math. Helv., 11 (1938), 151–179 | DOI | MR | Zbl

[18] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl

[19] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostrastv, vazhnykh v prilozheniyakh”, Sb. perev. Matematika, 1:1 (1957), 60–77

[20] Ivanova S. N., Melikhov S. N., “O pravykh obratnykh, opredelyaemykh posledovatelnostyami Aidelkhaita”, Vladikavk. matem. zhurn., 12:2 (2010), 24–30 | MR | Zbl

[21] Merzlyakov S. G., “Pravyi obratnyi dlya operatora svertki v prostranstve tselykh funktsii eksponentsialnogo tipa”, Ufimsk. matem. zhurn., 2:4 (2010), 85–87 | Zbl

[22] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR