Localization of Arnold tongues of discrete dynamical systems
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 109-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the exposition of the method of localizing the Arnold tongues for finite-dimensional dynamical systems with a discrete time which are the sets corresponding to rationally synchronized relations between the system's parameters. Such sets correspond to regions of parameter values for which the system has cycles of certain periods. The method allows us to obtain an approximate representation of the Arnold tongues, to study their properties in the major and minor resonances.
Keywords: dynamical systems, Arnold tongues, operator equations, functionalization of parameter.
Mots-clés : bifurcation
@article{UFA_2013_5_2_a9,
     author = {M. G. Yumagulov},
     title = {Localization of {Arnold} tongues of discrete dynamical systems},
     journal = {Ufa mathematical journal},
     pages = {109--130},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a9/}
}
TY  - JOUR
AU  - M. G. Yumagulov
TI  - Localization of Arnold tongues of discrete dynamical systems
JO  - Ufa mathematical journal
PY  - 2013
SP  - 109
EP  - 130
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a9/
LA  - en
ID  - UFA_2013_5_2_a9
ER  - 
%0 Journal Article
%A M. G. Yumagulov
%T Localization of Arnold tongues of discrete dynamical systems
%J Ufa mathematical journal
%D 2013
%P 109-130
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a9/
%G en
%F UFA_2013_5_2_a9
M. G. Yumagulov. Localization of Arnold tongues of discrete dynamical systems. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 109-130. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a9/

[1] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000

[2] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005, 768 pp.

[3] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory, Springer, N. Y., 1998 | MR

[4] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.–Izhevsk, 2002

[5] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., Struktury i khaos v nelineinykh sredakh, Fizmatlit, M., 2007 | Zbl

[6] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006

[7] Kozyakin V. S., Krasnoselskii A. M., Rachinskii D. I., “O yazykakh Arnolda v zadache o periodicheskikh traektoriyakh bolshikh amplitud”, Doklady AN, 411:3 (2006), 1–7 | MR

[8] Noris J., “The closing of Arnold tongues for periodically forced limit cycle”, Nonlinearity, 6 (1993), 1093 | DOI | MR

[9] Kozyakin V. S., “Subfurkatsiya periodicheskikh kolebanii”, DAN SSSR, 232:1 (1977), 25–27 | MR

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1975

[11] Yumagulov M. G., “Operatornyi metod issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh sistemakh”, Doklady AN, 424 (2009), 2 177–180 | Zbl

[12] Vyshinskii A. A., Ibragimova L. S., Murtazina S. A., Yumagulov M. G., “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh dinamicheskikh sistemakh”, Ufimskii matematicheskii zhurnal, 2:4 (2010), 3–26