On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 82-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the homogeneous Riemann–Hilbert problem in the complex upper half-plane with a countable set of coefficients' discontinuities and two-side curling at infinity. In the case the problem index has a power singularity of order less than 1/2, we obtain general solution and completely study the solvability of the problem in a special functional class.
Keywords: Riemann–Hilbert problem, curling at infinity, infinite index, entire functions.
@article{UFA_2013_5_2_a7,
     author = {R. B. Salimov and P. L. Shabalin},
     title = {On solvability of homogeneous {Riemann{\textendash}Hilbert} problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than~1/2},
     journal = {Ufa mathematical journal},
     pages = {82--93},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - P. L. Shabalin
TI  - On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2
JO  - Ufa mathematical journal
PY  - 2013
SP  - 82
EP  - 93
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/
LA  - en
ID  - UFA_2013_5_2_a7
ER  - 
%0 Journal Article
%A R. B. Salimov
%A P. L. Shabalin
%T On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2
%J Ufa mathematical journal
%D 2013
%P 82-93
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/
%G en
%F UFA_2013_5_2_a7
R. B. Salimov; P. L. Shabalin. On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 82-93. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[3] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Trudy seminara po kraevym zadacham, 16, Izd-vo Kazan. un-ta, Kazan, 1979, 149–162 | MR

[4] Salimov R. B., Shabalin P. L., “Metod regulyarizuyuschego mnozhitelya dlya resheniya odnorodnoi zadachi Gilberta s beskonechnym indeksom”, Izv. vuzov. Matematika, 2001, no. 4, 76–79 | MR | Zbl

[5] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | DOI | MR | Zbl

[6] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat. n., 1974, no. 6, 16–23 | MR

[7] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986, 239 pp. | MR | Zbl

[8] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. ob-va, Kazan, 2005, 297 pp.

[9] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. matem. zhurn., 49:4 (2008), 898–915 | MR | Zbl

[10] U. Kheiman, Meromorfnye funktsii, Mir, M., 1966, 287 pp. | MR

[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.

[12] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968, 624 pp. | Zbl