@article{UFA_2013_5_2_a7,
author = {R. B. Salimov and P. L. Shabalin},
title = {On solvability of homogeneous {Riemann{\textendash}Hilbert} problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than~1/2},
journal = {Ufa mathematical journal},
pages = {82--93},
year = {2013},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/}
}
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2 JO - Ufa mathematical journal PY - 2013 SP - 82 EP - 93 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/ LA - en ID - UFA_2013_5_2_a7 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2 %J Ufa mathematical journal %D 2013 %P 82-93 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/ %G en %F UFA_2013_5_2_a7
R. B. Salimov; P. L. Shabalin. On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 82-93. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a7/
[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR
[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[3] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Trudy seminara po kraevym zadacham, 16, Izd-vo Kazan. un-ta, Kazan, 1979, 149–162 | MR
[4] Salimov R. B., Shabalin P. L., “Metod regulyarizuyuschego mnozhitelya dlya resheniya odnorodnoi zadachi Gilberta s beskonechnym indeksom”, Izv. vuzov. Matematika, 2001, no. 4, 76–79 | MR | Zbl
[5] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | DOI | MR | Zbl
[6] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-mat. n., 1974, no. 6, 16–23 | MR
[7] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986, 239 pp. | MR | Zbl
[8] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. ob-va, Kazan, 2005, 297 pp.
[9] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. matem. zhurn., 49:4 (2008), 898–915 | MR | Zbl
[10] U. Kheiman, Meromorfnye funktsii, Mir, M., 1966, 287 pp. | MR
[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.
[12] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968, 624 pp. | Zbl