Solving of spectral problems for curl and Stokes operators
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 63-81
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work we explicitly solve the spectral problems for curl, gradient-divergence, and Stokes operators in a ball $B$ of radius $R$. The eigenfunctions $\mathbf{u}^{\pm}_{\kappa}$ of the curl associated with non-zero eigenvalues $\pm\lambda_{\kappa}$ are expressed by explicit formulas, as well as the vector-functions $\mathbf{q}_{\kappa}$ associated with the zero eigenvalue,
\[rot \mathbf{u}^{\pm}_{\kappa}=\pm\lambda_{\kappa}
\mathbf{u}^{\pm}_{\kappa}, \quad \psi_n(\pm\lambda_{\kappa} R)=0, \quad
\mathbf{n}\cdot\mathbf{u}^{\pm}_{\kappa}|_S=0;\quad
rot \mathbf{q}_{\kappa}=0, \quad
\mathbf{n}\cdot\mathbf{q}_{\kappa}|_S=0,\]
where
\[\psi_n(z)=(-z)^n(\frac{d}{zdz})^n\frac{\sin z}z, \quad \kappa=(n,m,k), n\geq 0, m\in \mathbb{N}, |k|\leq n\]
The same vector-functions are the eigenfunctions for the gradient-divergence operator with other eigenvalues,
\[\nabla \mathrm{div} \mathbf{u}^{\pm}_{\kappa}=0;
\quad
\nabla \mathrm{div} \mathbf{q}_{\kappa}=\mu_{\kappa}\mathbf{q}_{\kappa},
\quad \mu_{\kappa}=(\alpha_{n,m}/R)^2,\quad \psi_n'(\alpha_{n,m})=0.\]
The constructed system of vector eigenfunctions is complete and orthogonal in space
${\mathbf{{L}}_{2}}(B)$.The eigenfunctions
$(\mathbf{v}_\kappa, \ p_\kappa)$ of the Stokes operator in the ball are represented as a sum of two eigenfunctions of the curl associated with opposite eigenvalues:
${\mathbf{v}_{\kappa }}= \mathbf{u}_{\kappa }^{+}+\mathbf{u}_{\kappa
}^{-},$ $p_\kappa=\hbox{const}.$
Keywords:
curl, and Stokes operators, eigenvalues, eigenfunctions, Fourier series.
Mots-clés : gradient-divergence
Mots-clés : gradient-divergence
@article{UFA_2013_5_2_a6,
author = {R. S. Saks},
title = {Solving of spectral problems for curl and {Stokes} operators},
journal = {Ufa mathematical journal},
pages = {63--81},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/}
}
R. S. Saks. Solving of spectral problems for curl and Stokes operators. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 63-81. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/