Solving of spectral problems for curl and Stokes operators
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 63-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we explicitly solve the spectral problems for curl, gradient-divergence, and Stokes operators in a ball $B$ of radius $R$. The eigenfunctions $\mathbf{u}^{\pm}_{\kappa}$ of the curl associated with non-zero eigenvalues $\pm\lambda_{\kappa}$ are expressed by explicit formulas, as well as the vector-functions $\mathbf{q}_{\kappa}$ associated with the zero eigenvalue, \[rot \mathbf{u}^{\pm}_{\kappa}=\pm\lambda_{\kappa} \mathbf{u}^{\pm}_{\kappa}, \quad \psi_n(\pm\lambda_{\kappa} R)=0, \quad \mathbf{n}\cdot\mathbf{u}^{\pm}_{\kappa}|_S=0;\quad rot \mathbf{q}_{\kappa}=0, \quad \mathbf{n}\cdot\mathbf{q}_{\kappa}|_S=0,\] where \[\psi_n(z)=(-z)^n(\frac{d}{zdz})^n\frac{\sin z}z, \quad \kappa=(n,m,k), n\geq 0, m\in \mathbb{N}, |k|\leq n\] The same vector-functions are the eigenfunctions for the gradient-divergence operator with other eigenvalues, \[\nabla \mathrm{div} \mathbf{u}^{\pm}_{\kappa}=0; \quad \nabla \mathrm{div} \mathbf{q}_{\kappa}=\mu_{\kappa}\mathbf{q}_{\kappa}, \quad \mu_{\kappa}=(\alpha_{n,m}/R)^2,\quad \psi_n'(\alpha_{n,m})=0.\] The constructed system of vector eigenfunctions is complete and orthogonal in space ${\mathbf{{L}}_{2}}(B)$.The eigenfunctions $(\mathbf{v}_\kappa, \ p_\kappa)$ of the Stokes operator in the ball are represented as a sum of two eigenfunctions of the curl associated with opposite eigenvalues: ${\mathbf{v}_{\kappa }}= \mathbf{u}_{\kappa }^{+}+\mathbf{u}_{\kappa }^{-},$ $p_\kappa=\hbox{const}.$
Keywords: curl, and Stokes operators, eigenvalues, eigenfunctions, Fourier series.
Mots-clés : gradient-divergence
@article{UFA_2013_5_2_a6,
     author = {R. S. Saks},
     title = {Solving of spectral problems for curl and {Stokes} operators},
     journal = {Ufa mathematical journal},
     pages = {63--81},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - Solving of spectral problems for curl and Stokes operators
JO  - Ufa mathematical journal
PY  - 2013
SP  - 63
EP  - 81
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/
LA  - en
ID  - UFA_2013_5_2_a6
ER  - 
%0 Journal Article
%A R. S. Saks
%T Solving of spectral problems for curl and Stokes operators
%J Ufa mathematical journal
%D 2013
%P 63-81
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/
%G en
%F UFA_2013_5_2_a6
R. S. Saks. Solving of spectral problems for curl and Stokes operators. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 63-81. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a6/

[1] Ladyzhenskaya O. A., “O postroenii bazisov v prostranstvakh solenoidalnykh vektornykh polei”, Zapiski Nauch. seminarov POMI, 306, 2003, 71–85

[2] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR

[4] Kozlov V. V., Obschaya teoriya vikhrei, Izd. Dom «Udmurtskii universitet», Izhevsk, 1998, 240 pp. | MR | Zbl

[5] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1975, 392 pp. | MR

[6] Vainberg B. R., Grushin V. V., “O ravnomerno neellipticheskikh zadachakh, I”, Matem. sb., 72 (114):4 (1967), 602–636 | MR

[7] Solonnikov V. A., “Pereopredelennye ellipticheskie zadachi”, Zapiski Nauchnykh Sem. LOMI, 21, no. 5, 1971, 112–158 | MR | Zbl

[8] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl

[9] Pukhnachev V. V., “Simmetrii v uravneniyakh Nave–Stoksa”, Uspekhi mekhaniki, 2006, no. 1

[10] H. Weil, “The method of orthogonal projection in potetial theory”, Duke Math., 7 (1941), 411–444 | DOI | MR

[11] S. Chandrasekhar, “On force-free magnetic fields”, Proc. Nat. Ac. Sci., 42:1 (1956), 1–5 | DOI | MR | Zbl

[12] J. B. Taylor, “Relaxation of toroidal plasma and generation of reverse magnetic fields”, Phys. Rev. Letters, 33 (1974), 1139–1141 | DOI

[13] Arnold V. I., “Sur la topologie des écoulements stationnaires des fluides parfaits”, S. R. Acad. Sci. Paris, 261 (1965), 17–20 | MR | Zbl

[14] M. Henon, “Sur la topologie des lignes de courant dans un case particulier”, C. R. Acad. Sci. Paris, 262 (1966), 312–314

[15] Saks R. S., “Spektralnye zadachi dlya operatorov rotora i Stoksa”, Doklady Akad. Nauk, 416:4 (2007), 446–450 | MR | Zbl

[16] Saks R. S., “Reshenie spektralnoi zadachi dlya operatora rotor i operatora Stoksa s periodicheskimi kraevymi usloviyami”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 36, Zapiski nauchn. Seminarov POMI, 318, S.-P, 2004, 246–276 | Zbl

[17] Saks R. C., “O kraevykh zadachakh dlya sistemy $rot \; u+\lambda \;u=h$”, DAN, 199:5 (1971), 1022–1025 | MR | Zbl

[18] Saks R. S., “O kraevykh zadachakh dlya sistemy $rot \; u+\lambda \;u=h$”, Differentsialnye uravneniya, 8:1 (1972), 126–140 | MR

[19] Fursenko A. A., Kraevaya zadacha dlya odnoi ravnomerno neellipticheskoi sistemy, Rukopis diplomnoi raboty studenta matem. fak.-ta NGU, Novosibirsk, 1971, 29 pp.

[20] Saks R. S., Kraevye zadachi dlya ellipticheskikh sistem differentsialnykh uravnenii, NGU, Novosibirsk, 1975, 164 pp.

[21] Saks R. S., “Spektr operatora vikhrya v share pri uslovii neprotekaniya i sobstvennye znacheniya kolebanii uprugogo shara, zakreplennogo na granitse”, Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy, Trudy mezhdunarodnoi konferentsii, v. IV, Prikladnaya matematika, IM s VTs UNTs RAN, Ufa, 2000, 61–68

[22] S. Chandrasekhar, P. S. Kendall, “On force-free magnetic fields”, Astrophys. Journal, 126 (1957), 457–460 | DOI | MR

[23] D. Montgomery, L. Turner, G. Vahala, “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids, 21:5 (1978), 757–764 | DOI | Zbl

[24] Berkhin P. E., “Samosopryazhennaya kraevaya zadacha dlya sistemy $\ast d \; u+\lambda \;u= f$”, DAN, 222:1 (1975), 15–17 | MR

[25] Y. Giga, Z. Yoshida, “Remark on spectra of operator rot”, Math. Z., 204 (1990), 235–245 | DOI | MR | Zbl

[26] R. Picard, On selfadjoint realization of curl and some its applications, Preprint, MATH-AN-02-96, Technische Universitat Dresden, Dresden, Marz, 1996 | MR

[27] Saks R. S., “O svoistvakh obobschenno ellipticheskikh psevdodifferentsialnykh operatorov na zamknutykh mnogoobraziyakh”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 28, Zapiski nauchn. Seminarov POMI, 243, S.-P., 1997, 215–269 | MR | Zbl

[28] Makhalov A. S., Nikolaenko V. P., “Globalnaya razreshimost trekhmernykh uravnenii Nave–Stoksa s ravnomerno bolshoi nachalnoi zavikhrennostyu”, Uspekhi matematicheskikh nauk, 58:2 (2003), 79–93 | DOI | MR

[29] Saks R. S., “Globalnye resheniya uravnenii Nave–Stoksa v ravnomerno vraschayuschemsya prostranstve”, Teoreticheskaya i matematicheskaya fizika, 162:2 (2010), 196–215 | DOI | MR | Zbl

[30] Saks R. S., “Zadacha Koshi dlya uravnenii Nave–Stoksa, metod Fure”, Ufimskii matematicheskii zhurnal, 2011:3 (1), 53–79 | Zbl