On a number of solutions in problems with spectral parameter for equations with discontinuous operators
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a real reflexive Banach space we consider a problem on existence of solutions to a problem with a spectral parameter for equations with discontinuous operators. By the variational approach we obtain theorems on the number of the solutions to the considered problems. As an application, we consider main boundary value problems for elliptic equations with a spectral parameter and discontinuous nonlinearities.
Keywords: spectral parameter, discontinuous operator, variational method, number of solutions.
@article{UFA_2013_5_2_a5,
     author = {D. K. Potapov},
     title = {On a number of solutions in problems with spectral parameter for equations with discontinuous operators},
     journal = {Ufa mathematical journal},
     pages = {56--62},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a5/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - On a number of solutions in problems with spectral parameter for equations with discontinuous operators
JO  - Ufa mathematical journal
PY  - 2013
SP  - 56
EP  - 62
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a5/
LA  - en
ID  - UFA_2013_5_2_a5
ER  - 
%0 Journal Article
%A D. K. Potapov
%T On a number of solutions in problems with spectral parameter for equations with discontinuous operators
%J Ufa mathematical journal
%D 2013
%P 56-62
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a5/
%G en
%F UFA_2013_5_2_a5
D. K. Potapov. On a number of solutions in problems with spectral parameter for equations with discontinuous operators. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 56-62. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a5/

[1] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR

[2] Rabinowitz P. H., “Some global results for nonlinear eigenvalue problems”, J. Funct. Anal., 7 (1971), 487–513 | DOI | MR | Zbl

[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962, 396 pp. | MR

[4] Amann H., “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spases”, SIAM Review, 18:4 (1976), 620–709 | DOI | MR | Zbl

[5] Rabinowitz P. H., “Variational methods for nonlinear elliptic eigenvalue problems”, Indiana Univ. Math. J., 23:8 (1974), 729–754 | DOI | MR | Zbl

[6] Rabinowitz P. H., “A bifurcation theorem for potentional operators”, J. Funct. Anal., 25 (1977), 412–424 | DOI | MR | Zbl

[7] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[8] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[9] Potapov D. K., “Otsenka bifurkatsionnogo parametra v spektralnykh zadachakh dlya uravnenii s razryvnymi operatorami”, Ufimsk. matem. zhurn., 3:1 (2011), 43–46 | MR | Zbl

[10] Potapov D. K., “Otsenivanie norm operatora v zadachakh na sobstvennye znacheniya dlya uravnenii s razryvnymi operatorami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:4 (2011), 41–45

[11] Pavlenko V. N., “Variatsionnyi metod dlya uravnenii s razryvnymi operatorami”, Vestn. Chelyab. gos. un-ta. Ser. 3. Matematika. Mekhanika, 1994, no. 1(2), 87–95 | MR | Zbl

[12] Chang K. C., “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. and Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[13] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 588 pp. | MR

[14] Pavlenko V. N., Vinokur V. V., “Rezonansnye kraevye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 2001, no. 5, 43–58 | MR | Zbl

[15] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp. | MR

[16] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983, 424 pp. | MR | Zbl

[17] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1982, 336 pp. | MR

[18] Potapov D. K., “O chisle polupravilnykh reshenii v zadachakh so spektralnym parametrom dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 48:3 (2012), 447–449 | Zbl