Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 43-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work we obtain variational Hardy type inequalities with power and logarithmic weights which are generalizations of the corresponding inequalities given earlier in the papers by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom. We formulate and prove inequalities for arbitrary domains, and then we substantially simplify them for the class of convex domains and a special family of non-convex domains.
Keywords: Hardy type inequalities, regular domains, distance function, iteration of logarithms.
Mots-clés : convex domains
@article{UFA_2013_5_2_a4,
     author = {R. G. Nasibullin and A. M. Tukhvatullina},
     title = {Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains},
     journal = {Ufa mathematical journal},
     pages = {43--55},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a4/}
}
TY  - JOUR
AU  - R. G. Nasibullin
AU  - A. M. Tukhvatullina
TI  - Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains
JO  - Ufa mathematical journal
PY  - 2013
SP  - 43
EP  - 55
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a4/
LA  - en
ID  - UFA_2013_5_2_a4
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%A A. M. Tukhvatullina
%T Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains
%J Ufa mathematical journal
%D 2013
%P 43-55
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a4/
%G en
%F UFA_2013_5_2_a4
R. G. Nasibullin; A. M. Tukhvatullina. Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 43-55. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a4/

[1] Dubinskii Yu. A., “Ob odnom neravenstve tipa Khardi i ego prilozheniyakh”, Tr. MIAN, 269, 2010, 112–132 | MR | Zbl

[2] A. Balinsky, A. Laptev, A. V. Sobolev, “Generalized Hardy inequality for the magnetic Dirichlet forms”, Journal of statistical physics, 116 (2004), 507–521 | DOI | MR | Zbl

[3] A. Laptev, T. Weidl, “Hardy inequalities for magnetic Dirichlet forms”, Operator Theory: Advances and Applications, 108, 1999, 299–305 | MR

[4] M. Solomyak, “A remark on the Hardy inequalities”, Integr. Equat. Oper. Th., 19 (1994), 120–124 | DOI | MR | Zbl

[5] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge Univ. Press, Cambridge, 1995, 186 pp. | MR | Zbl

[6] E.B. Davies, “A Review of Hardy Inequalities”, The Maz'ya anniversary Collection, v. 2, Oper. Theory Adv. Appl., 110, 1999, 55–67 | MR | Zbl

[7] F. G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 723–736 | MR | Zbl

[8] Avkhadiev F. G., Neravenstva dlya integralnykh kharakteristik oblastei, KGU, Kazan, 2006, 140 pp.

[9] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., XXI (2006), 3–31 http://ljm.ksu.ru | MR | Zbl

[10] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[11] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. MIAN, 255, 2006, 8–18 | MR

[12] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izvestiya vuzov. Matem., 2011, no. 9, 90–94 | MR | Zbl

[13] H. Brezis, M. Marcus, “Hardy's inequality revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 217–237 | MR | Zbl

[14] M. Hoffmann-Ostenhof, T Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[15] Tidblom J., “A geometrical version of Hardy's inequality for $ W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 2004, no. 132, 2265–2271 | DOI | MR | Zbl

[16] G. Barbatis, S. Filippas, A. Tertikas, “Refined geometric $L^p$ Hardy inequalities”, Communications in Contemporary Mathematics, 5:6 (2003), 869–881 | DOI | MR | Zbl

[17] M. Del Pino, J. Dolbeault, S. Filippas, A. Tertikas, “A logarithmic Hardy inequality”, J. Funct. Anal., 259 (2010), 2045–2072 | DOI | MR | Zbl

[18] S. M. Buckley, R. Hurri-Syrjänene, Iterated log-scale Orlicz–Hardy inequalities, Preprint, Department of Mathematics, National University of Ireland, Maynooth, 2011 | MR

[19] Nasibullin R. G., “Neravenstva tipa Khardi, vklyuchayuschie povtornye logarifmy”, Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 43, Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 2011, 262–263

[20] Nasibullin R. G., “Nekotoroe obobschenie neravenstva Khardi”, Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 44, Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 2011, 221–222

[21] Tukhvatullina A. M., “Neravenstva tipa Khardi dlya spetsialnogo semeistva nevypuklykh oblastei”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 153:1 (2011), 211–220 | Zbl

[22] Tukhvatullina A. M., “Rasprostranenie kriteriya regulyarnosti oblasti Devisa na mnogomernye oblasti i ego primenenie v neravenstvakh tipa Khardi”, Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 43, Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 2011, 350–351

[23] Tukhvatullina A. M., “Dostatochnoe uslovie regulyarnosti oblasti i ego primenenie v neravenstvakh tipa Khardi”, Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 38, Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 2009, 285–287