On existence of nodal solution to elliptic equations with convex-concave nonlinearities
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a bounded connected domain $\Omega \subset \mathbb{R}^N$, $N \geqslant 1$, with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex-concave nonlinearity \begin{equation*} \begin{cases} -\Delta u = \lambda |u|^{q-2} u + |u|^{\gamma-2} u, \quad x \in \Omega \\ u|_{\partial \Omega} = 0, \end{cases} \end{equation*} where $1 q 2 \gamma 2^*$. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval $\lambda \in (-\infty, \lambda_0^*)$, where $\lambda_0^*$ is determined by the variational principle of nonlinear spectral analysis via fibering method.
Keywords: convex-concave nonlinearity, fibering method.
Mots-clés : nodal solution
@article{UFA_2013_5_2_a2,
     author = {V. E. Bobkov},
     title = {On existence of nodal solution to elliptic equations with convex-concave nonlinearities},
     journal = {Ufa mathematical journal},
     pages = {18--30},
     year = {2013},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/}
}
TY  - JOUR
AU  - V. E. Bobkov
TI  - On existence of nodal solution to elliptic equations with convex-concave nonlinearities
JO  - Ufa mathematical journal
PY  - 2013
SP  - 18
EP  - 30
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/
LA  - en
ID  - UFA_2013_5_2_a2
ER  - 
%0 Journal Article
%A V. E. Bobkov
%T On existence of nodal solution to elliptic equations with convex-concave nonlinearities
%J Ufa mathematical journal
%D 2013
%P 18-30
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/
%G en
%F UFA_2013_5_2_a2
V. E. Bobkov. On existence of nodal solution to elliptic equations with convex-concave nonlinearities. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/

[1] H. Berestycki, P. L. Lions, “Nonlinear Scalar FieM Equations. I: Existence of a Ground State”, Archive for Rational Mechanics and Analysis, 82 (1983), 313–345 | MR | Zbl

[2] T. Cazenave, F. Dickstein, M. Escobedo, “A semilinear heat equation with concave-convex nonlinearity)”, Rendiconti di Matematica, VII:19 (1999), 211–242 | MR

[3] A. Ambrosetti, H. Brezis, G. Cerami, “Combined effects of concave and convex nonlinearities in some elliptic problems”, J. Funct. Anal., 122 (1994), 519-–543 | DOI | MR | Zbl

[4] T. Bartsch, M. Willem, “On an elliptic equation with concave and convex nonlinearities”, Proc. Amer. Math. Soc., 123 (1995), 3555-–3561 | DOI | MR | Zbl

[5] Ya. Il'yasov, “On nonlocal existence results for elliptic equations with convex-concave nonlinearities”, Nonlinear Anal., 61 (2005), 211-–236 | DOI | MR | Zbl

[6] L. Boccardo, M. Escobedo, I. Peral, “A Dirichlet problem involving critical exponents”, Non-linear Anal., 24:11 (1995), 1639-–1648 | DOI | MR | Zbl

[7] G. Azorero, J. Manfredi, I. Alonso, “Sobolev versus Hölder local minimizes and global multiplicity for some quasilinear elliptic equations”, Commun. Contemp. Math., 2:3 (2000), 385-–404 | DOI | MR | Zbl

[8] S. Coleman, V. Glazer, A. Martin, “Action minima among solution to a class of Euclidean scalar field equations”, Comm. Math. Phys., 58:2 (1978), 211-–221 | DOI | MR

[9] G. Azorero, I. Alonso, “Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term”, Transactions of the American Mathematical Society, 323:2 (1991), 877–895 | DOI | MR | Zbl

[10] H. Berestycki, P. L. Lions, “Nonlinear scalar field equations. II: Existence of infinitely many solutions”, Archive for Rational Mechanics and Analysis, 82 (1983), 347–375 | MR | Zbl

[11] A. Castro, J. Cossio, J. M. Neuberger, “A sign-changing solution for a superlinear Dirichlet problem”, Rocky Mountain J. Math., 27:4 (1997), 1041-—1053 | DOI | MR | Zbl

[12] D. Costa, Z. Ding, J. M. Neuberger, “A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains”, Journal of Computational and Applied Mathematics, 131 (2001), 299-–319 | DOI | MR | Zbl

[13] T. Bartsch, T. Weth, “A note on additional properties of sign changing solutions to superlinear elliptic equations”, Topol. Methods Nonlinear Anal., 22:1 (2003), 1–14 | MR | Zbl

[14] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247 (1979), 1327–1331 | MR | Zbl

[15] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN SSSR, 192, 1990, 146-–163 | MR

[16] Ya. Il’yasov, “On a procedure of projective fibering of functionals on Banach spaces”, Proc. Steklov Inst. Math., 232, 2001, 150-–156 | MR | Zbl

[17] Ilyasov Ya. Sh., “Nelokalnye issledovaniya bifurkatsii reshenii nelineinykh ellipticheskikh uravnenii”, Izv. RAN. Ser. matem., 66:6 (2002), 19-–48 | DOI | MR | Zbl

[18] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, 1979 | MR

[19] M. Balabane, J. Dolbeault, H. Ounaies, “Nodal solutions for a sublinear elliptic equation”, Nonlinear Analysis: Theory, Methods, Applications, 52 (2003), 219–237 | DOI | MR | Zbl

[20] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962

[21] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996 | MR

[22] M. N. Vrahatis, “A short proof and a generalization of Miranda's existence theorem”, Proc. Amer. Math. Soc., 107:3 (1989), 701–703 | MR | Zbl