On existence of nodal solution to elliptic equations with convex-concave nonlinearities
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded connected domain $\Omega \subset \mathbb{R}^N$, $N \geqslant 1$, with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex-concave nonlinearity \begin{equation*} \begin{cases} -\Delta u = \lambda |u|^{q-2} u + |u|^{\gamma-2} u, \quad x \in \Omega \\ u|_{\partial \Omega} = 0, \end{cases} \end{equation*} where $1 q 2 \gamma 2^*$. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval $\lambda \in (-\infty, \lambda_0^*)$, where $\lambda_0^*$ is determined by the variational principle of nonlinear spectral analysis via fibering method.
Keywords: convex-concave nonlinearity, fibering method.
Mots-clés : nodal solution
@article{UFA_2013_5_2_a2,
     author = {V. E. Bobkov},
     title = {On existence of nodal solution to elliptic equations with convex-concave nonlinearities},
     journal = {Ufa mathematical journal},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/}
}
TY  - JOUR
AU  - V. E. Bobkov
TI  - On existence of nodal solution to elliptic equations with convex-concave nonlinearities
JO  - Ufa mathematical journal
PY  - 2013
SP  - 18
EP  - 30
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/
LA  - en
ID  - UFA_2013_5_2_a2
ER  - 
%0 Journal Article
%A V. E. Bobkov
%T On existence of nodal solution to elliptic equations with convex-concave nonlinearities
%J Ufa mathematical journal
%D 2013
%P 18-30
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/
%G en
%F UFA_2013_5_2_a2
V. E. Bobkov. On existence of nodal solution to elliptic equations with convex-concave nonlinearities. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/