On existence of nodal solution to elliptic equations with convex-concave nonlinearities
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In a bounded connected domain $\Omega \subset \mathbb{R}^N$, $N \geqslant 1$, with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex-concave nonlinearity
\begin{equation*}
\begin{cases}
-\Delta u = \lambda |u|^{q-2} u + |u|^{\gamma-2} u, \quad x \in \Omega \\ u|_{\partial \Omega} = 0,
\end{cases}
\end{equation*}
where $1 q 2 \gamma 2^*$. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval $\lambda \in (-\infty, \lambda_0^*)$, where $\lambda_0^*$ is determined by the variational principle of nonlinear spectral analysis via fibering method.
Keywords:
convex-concave nonlinearity, fibering method.
Mots-clés : nodal solution
Mots-clés : nodal solution
@article{UFA_2013_5_2_a2,
author = {V. E. Bobkov},
title = {On existence of nodal solution to elliptic equations with convex-concave nonlinearities},
journal = {Ufa mathematical journal},
pages = {18--30},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/}
}
V. E. Bobkov. On existence of nodal solution to elliptic equations with convex-concave nonlinearities. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 18-30. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a2/