Completeness and minimality of systems of Bessel functions
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 131-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the necessary and sufficient conditions for the completeness and minimality in the space $L^2(0;1)$ of system $(\sqrt{x\rho_k}J_{\nu}(x\rho_k):k\in\Bbb N)$ generated by Bessel function of the first kind of index $\nu\ge -1/2$. Moreover, we establish a criterion for the completeness and minimality of system $(x^{-2}\sqrt{x\rho_k}J_{3/2}(x\rho_k):k\in\Bbb N)$ in the space $L^2((0;1);x^2 dx)$.
Keywords: Paley–Wiener theorem, Bessel function, entire function, complete system, minimal system, basis.
Mots-clés : biorthogonal system
@article{UFA_2013_5_2_a10,
     author = {B. V. Vynnyts'kyi and R. V. Khats'},
     title = {Completeness and minimality of systems  of {Bessel} functions},
     journal = {Ufa mathematical journal},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/}
}
TY  - JOUR
AU  - B. V. Vynnyts'kyi
AU  - R. V. Khats'
TI  - Completeness and minimality of systems  of Bessel functions
JO  - Ufa mathematical journal
PY  - 2013
SP  - 131
EP  - 141
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/
LA  - en
ID  - UFA_2013_5_2_a10
ER  - 
%0 Journal Article
%A B. V. Vynnyts'kyi
%A R. V. Khats'
%T Completeness and minimality of systems  of Bessel functions
%J Ufa mathematical journal
%D 2013
%P 131-141
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/
%G en
%F UFA_2013_5_2_a10
B. V. Vynnyts'kyi; R. V. Khats'. Completeness and minimality of systems  of Bessel functions. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 131-141. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/