Completeness and minimality of systems of Bessel functions
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 131-141
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the necessary and sufficient conditions for the completeness and minimality in the space $L^2(0;1)$ of system $(\sqrt{x\rho_k}J_{\nu}(x\rho_k):k\in\Bbb N)$ generated by Bessel function of the first kind of index $\nu\ge -1/2$. Moreover, we establish a criterion for the completeness and minimality of system $(x^{-2}\sqrt{x\rho_k}J_{3/2}(x\rho_k):k\in\Bbb N)$ in the space $L^2((0;1);x^2 dx)$.
Keywords:
Paley–Wiener theorem, Bessel function, entire function, complete system, minimal system, basis.
Mots-clés : biorthogonal system
Mots-clés : biorthogonal system
@article{UFA_2013_5_2_a10,
author = {B. V. Vynnyts'kyi and R. V. Khats'},
title = {Completeness and minimality of systems of {Bessel} functions},
journal = {Ufa mathematical journal},
pages = {131--141},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/}
}
B. V. Vynnyts'kyi; R. V. Khats'. Completeness and minimality of systems of Bessel functions. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 131-141. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a10/