Approximate solutions of nonlinear convolution type equations on segment
Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
For various classes of integral convolution type equations with a monotone nonlinearity, we prove global solvability and uniqueness theorems as well as theorems on the ways for finding the solutions in real Lebesgue spaces. It is shown that the solutions can be found in space $L_2(0, 1)$ by a Picard's type successive approximations method and we prove the estimates for the rate of convergence. The obtained results cover, in particular, linear integral convolution type equations. In the case of a power nonlinearity, it is shown that the solutions can be found by the gradient method in the space $L_p(0, 1)$ and weighted spaces $L_p(\varrho)$.
Keywords:
nonlinear integral equations, convolution type operator, potential operator, monotone operator.
@article{UFA_2013_5_2_a0,
author = {S. N. Askhabov and A. L. Dzhabrailov},
title = {Approximate solutions of nonlinear convolution type equations on segment},
journal = {Ufa mathematical journal},
pages = {3--11},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a0/}
}
TY - JOUR AU - S. N. Askhabov AU - A. L. Dzhabrailov TI - Approximate solutions of nonlinear convolution type equations on segment JO - Ufa mathematical journal PY - 2013 SP - 3 EP - 11 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a0/ LA - en ID - UFA_2013_5_2_a0 ER -
S. N. Askhabov; A. L. Dzhabrailov. Approximate solutions of nonlinear convolution type equations on segment. Ufa mathematical journal, Tome 5 (2013) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/UFA_2013_5_2_a0/