@article{UFA_2013_5_1_a8,
author = {M. M. Matyoqubov and A. B. Yakhshimuratov},
title = {Integration of higher {Korteweg-de} {Vries} equation with a self-consistent source in class of periodic functions},
journal = {Ufa mathematical journal},
pages = {102--111},
year = {2013},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a8/}
}
TY - JOUR AU - M. M. Matyoqubov AU - A. B. Yakhshimuratov TI - Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions JO - Ufa mathematical journal PY - 2013 SP - 102 EP - 111 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a8/ LA - en ID - UFA_2013_5_1_a8 ER -
%0 Journal Article %A M. M. Matyoqubov %A A. B. Yakhshimuratov %T Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions %J Ufa mathematical journal %D 2013 %P 102-111 %V 5 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a8/ %G en %F UFA_2013_5_1_a8
M. M. Matyoqubov; A. B. Yakhshimuratov. Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a8/
[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure and Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[3] Novikov S. P., “Periodicheskaya zadacha Kortevega-de Friza, I”, Funkts. analiz i pril., 8:3 (1974), 54–66 | MR | Zbl
[4] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega-de Friza”, ZhETF, 67:12 (1974), 2131–2143 | MR
[5] Marchenko V. A., “Periodicheskaya zadacha Kortevega-de Friza”, Mat. sb., 95:3 (1974), 331–356 | Zbl
[6] Dubrovin B. A., “Periodicheskaya zadacha dlya uravneniya Kortevega-de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i pril., 9:3 (1975), 41–51 | MR | Zbl
[7] Its A. R., Matveev V. B., “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega-de Friza”, Teoret. mat. fiz., 23:1 (1975), 51–68 | MR
[8] P. Lax, “Periodic solutions of the KdV equations”, Lecture in Appl. Math. AMS, 15, 1974, 85–96 | MR
[9] P. Lax, “Periodic Solutions of the KdV equation”, Comm. Pure and Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl
[10] H. P. McKean, E. Trubowitz, “Hill's operator and Hyperelliptic Function Theory in the Presence of infinitely Many Branch Points”, Comm. Pure and Appl. Math., 29 (1976), 143–226 | DOI | MR | Zbl
[11] Melnikov V. K., Metod integrirovaniya uravneniya Kortevega-de Vrisa s samosoglasovannym istochnikom, Preprint, Dubna, 1988
[12] V. K. Mel'nikov, “Integration of the nonlinear Schrödinger equation with a source”, Inverse Problems, 8 (1992), 133–147 | DOI | MR | Zbl
[13] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl
[14] Urazboev G. U., Khasanov A. B., “Integrirovanie uravneniya Kortevega-de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa “stupenki””, Teoret. mat. fiz., 129:1 (2001), 38–54 | DOI | MR
[15] Khasanov A. B., Urazboev G. U., “Integrirovanie obschego uravneniya KdF s pravoi chastyu v klasse bystroubyvayuschikh funktsii”, Uzb. matem. zhurnal, 2003, no. 2, 53–59 | MR
[16] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl
[17] Khasanov A. B., Yakhshimuratov A. B., “Ob uravnenii Kortevega-de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Teoret. mat. fiz., 164:2 (2010), 214–221 | DOI
[18] A. Yakhshimuratov, “The Nonlinear Schrödinger Equation with a Self-consistent Source in the Class of Periodic Functions”, Mathematical Physics, Analysis and Geometry, 14 (2011), 153–169 | DOI | MR | Zbl
[19] Yakhshimuratov A. B., “Integrirovanie uravneniya Kortevega-de Friza so spetsialnym svobodnym chlenom v klasse periodicheskikh funktsii”, Ufimskii mat. zhurnal, 3:4 (2011), 144–150 | Zbl
[20] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984, 240 pp. | MR
[21] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, V 2-kh t., v. 2, IL, M., 1961, 556 pp.
[22] W. Magnus, W. Winkler, Hill's equation, Interscience Wiley, New York, 1966
[23] Stankevich I. V., “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, DAN SSSR, 192:1 (1970), 34–37
[24] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Mat. sb., 97:4 (1975), 540–606 | MR | Zbl
[25] E. Trubowitz, “The inverse problem for periodic potentials”, Comm. Pure and Appl. Math., 30 (1977), 321–337 | DOI | MR | Zbl
[26] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl
[27] G. Borg, “Eine Umkehrung der Sturm–Liouvillschen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78:2 (1946), 1–96 | DOI | MR | Zbl
[28] H. Hochstadt, “On a Hill's equation with double eigenvalues”, Proc. Amer. Math. Soc., 65 (1977), 343–374 | MR
[29] H. Hochstadt, “A Generalization of Borg's Inverse Theorem for Hill's Equations”, Journal of math. analysis and applications, 102 (1984), 599–605 | DOI | MR | Zbl