Construction of optimal grid interpolation formulas in Sobolev space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables by Sobolev method
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 90-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work we consider the problem of constructing optimal grid interpolation formulas in the space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables. We find the coefficients of grid interpolation formulas.
Keywords: Sobolev space, properties of the discrete analogue of the operator $\Delta^m$
Mots-clés : optimal interpolation formula, optimal coefficients.
@article{UFA_2013_5_1_a7,
     author = {N. Kh. Mamatova and A. R. Hayotov and Kh. M. Shadimetov},
     title = {Construction of optimal grid interpolation formulas in {Sobolev} space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables by {Sobolev} method},
     journal = {Ufa mathematical journal},
     pages = {90--101},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a7/}
}
TY  - JOUR
AU  - N. Kh. Mamatova
AU  - A. R. Hayotov
AU  - Kh. M. Shadimetov
TI  - Construction of optimal grid interpolation formulas in Sobolev space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables by Sobolev method
JO  - Ufa mathematical journal
PY  - 2013
SP  - 90
EP  - 101
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a7/
LA  - en
ID  - UFA_2013_5_1_a7
ER  - 
%0 Journal Article
%A N. Kh. Mamatova
%A A. R. Hayotov
%A Kh. M. Shadimetov
%T Construction of optimal grid interpolation formulas in Sobolev space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables by Sobolev method
%J Ufa mathematical journal
%D 2013
%P 90-101
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a7/
%G en
%F UFA_2013_5_1_a7
N. Kh. Mamatova; A. R. Hayotov; Kh. M. Shadimetov. Construction of optimal grid interpolation formulas in Sobolev space $\widetilde{L_2^m}(H)$ of periodic function of $n$ variables by Sobolev method. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 90-101. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a7/

[1] Sobolev S. L., “O zadache interpolirovaniya funktsii $n$ peremennykh”, Dokl. AN SSSR, 137:4 (1961), 778–781 | Zbl

[2] J. C. Holladay, “Smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 223–243 | DOI | MR

[3] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 318 pp. | MR | Zbl

[4] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl

[5] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975, 496 pp.

[6] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1984 | MR

[7] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka, Leningrad, 1991 | MR | Zbl

[8] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1981, 424 pp. | MR | Zbl

[9] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[10] Shadimetov Kh. M., “Diskretnyi analog operatora $d^{2m} /dx^{2m} $ i ego postroenie”, Voprosy vychislitelnoi i prikladnoi matematiki, 1985, no. 79, 22–35 | Zbl