On asymptotic behavior of positive solutions of some quasilinear inequalities on model Riemannian manifolds
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 83-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study asymptotic behavior of positive solutions to some quasilinear elliptic inequalities on spherically symmetric noncompact (model) Riemannian manifolds. In particular, we find conditions under which Liouville type theorems on absence of nontrivial solutions hold true, as well as the conditions of existence and cardinality of the set of positive solutions of the studied inequalities on the Riemannian manifolds. The results generalize similar results obtained previously by Y. Naito and H. Usami for the Euclidean space $\mathbf{R}^n $.
Keywords: quasilinear elliptic inequality, model Riemannian manifolds.
Mots-clés : Liouville type theorem
@article{UFA_2013_5_1_a6,
     author = {A. G. Losev and E. A. Mazepa},
     title = {On asymptotic behavior of positive solutions of some quasilinear inequalities on model {Riemannian} manifolds},
     journal = {Ufa mathematical journal},
     pages = {83--89},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a6/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - E. A. Mazepa
TI  - On asymptotic behavior of positive solutions of some quasilinear inequalities on model Riemannian manifolds
JO  - Ufa mathematical journal
PY  - 2013
SP  - 83
EP  - 89
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a6/
LA  - en
ID  - UFA_2013_5_1_a6
ER  - 
%0 Journal Article
%A A. G. Losev
%A E. A. Mazepa
%T On asymptotic behavior of positive solutions of some quasilinear inequalities on model Riemannian manifolds
%J Ufa mathematical journal
%D 2013
%P 83-89
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a6/
%G en
%F UFA_2013_5_1_a6
A. G. Losev; E. A. Mazepa. On asymptotic behavior of positive solutions of some quasilinear inequalities on model Riemannian manifolds. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 83-89. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a6/

[1] A. Grigor`yan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[2] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl

[3] Losev A. G., Mazepa E. A., “Ob asimptoticheskom povedenii reshenii nekotorykh uravnenii ellipticheskogo tipa na nekompaktnykh rimanovykh mnogoobraziyakh”, Izv. vuzov. Matematika, 1999, no. 6, 41–49 | MR | Zbl

[4] Losev A. G., Fedorenko Yu. S., “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv na nekompaktnykh rimanovykh mnogoobraziyakh”, Mat. Zametki, 81:6 (2007), 867–878 | DOI | MR | Zbl

[5] Naito Y., Usami H., “Entire solutions of the inequality div $(A(|Du|)Du)\geq f(u)$”, Math. Z., 255 (1997), 167–175 | DOI | MR

[6] Keller J. B., “On solutions of $\Delta u=f(u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl

[7] Osserman R., “On the inequality $\Delta u\ge f(u)$”, Pack. J. Math., 7 (1957), 1641–1647 | DOI | MR | Zbl

[8] Kusano T., Swanson C. A., “Radial entire solutions of a class of quasilinear elliptic equations”, Journal of diff. equation, 83 (1990), 379–399 | DOI | MR | Zbl

[9] Yu. N. Bibikov, Kurs obyknovennykh differentsialnykh uravnenii, Uchebnoe posobie dlya universtitetov, Vysshaya shkola, M., 1991, 304 pp.