Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 63-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to a class of parabolic equations with double nonlinearity whose representative is a model equation $$(|u|^{k-2}u)_t=\sum_{\alpha=1}^n(|u_{x_{\alpha}} |^{p_{\alpha}-2}u_{x_{\alpha}})_{x_\alpha},\quad p_n\geq \ldots \geq p_1>k,\quad k\in(1,2).$$ For the solution of the first mixed problem in a cylindrical domain $ D=(0,\infty)$ $\times\Omega, \;$ ${\Omega\subset \mathbb{R}_n,}$ $\;n\geq 2$ with homogeneous Dirichlet boundary condition and compactly supported initial function precise estimates the rate of decay as $t\rightarrow\infty$ are established. Earlier these results were obtained by the authors for $k\geq 2$. The case $k\in(1,2)$ differs by the method of constructing Galerkin's approximations that for an isotropic model equation was proposed by E. R. Andriyanova and F. Kh. Mukminov.
Keywords: doubly nonlinear parabolic equations, existence of strong solution, decay rate of solution.
Mots-clés : anisotropic equation
@article{UFA_2013_5_1_a5,
     author = {L. M. Kozhevnikova and A. A. Leontiev},
     title = {Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains},
     journal = {Ufa mathematical journal},
     pages = {63--82},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a5/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Leontiev
TI  - Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains
JO  - Ufa mathematical journal
PY  - 2013
SP  - 63
EP  - 82
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a5/
LA  - en
ID  - UFA_2013_5_1_a5
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Leontiev
%T Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains
%J Ufa mathematical journal
%D 2013
%P 63-82
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a5/
%G en
%F UFA_2013_5_1_a5
L. M. Kozhevnikova; A. A. Leontiev. Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 63-82. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a5/

[1] Kozhevnikova L. M., Mukminov F. Kh., “Otsenki skorosti stabilizatsii pri $t\rightarrow\infty$ resheniya pervoi smeshannoi zadachi dlya kvazilineinoi sistemy parabolicheskikh uravnenii vtorogo poryadka”, Matem. sb., 191:2 (2000), 91–131 | DOI | MR | Zbl

[2] Kozhevnikova L. M., “Stabilizatsiya resheniya pervoi smeshannoi zadachi dlya evolyutsionnogo kvaziellipticheskogo uravneniya”, Matem. sb., 196:7 (2005), 67–100 | DOI | MR | Zbl

[3] Karimov R. Kh., Kozhevnikova L. M., “Stabilizatsiya reshenii kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnymi granitsami”, Matem. sb., 201:9 (2010), 3–26 | DOI | MR | Zbl

[4] Degtyarev S. P., Tedeev A. F., “$L_1-L_{\infty}$ otsenki resheniya zadachi Koshi dlya anizotropnogo vyrozhdayuschegosya parabolicheskogo uravneniya s dvoinoi nelineinostyu i rastuschimi nachalnymi dannymi”, Matem. sb., 198:5 (2007), 45–66 | DOI | MR | Zbl

[5] Andriyanova E. R., Mukminov F. Kh., “Otsenka snizu skorosti ubyvaniya resheniya parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Ufimsk. matem. zhurn., 3:3 (2011), 3–14 | Zbl

[6] Kozhevnikova L. M., Leontev A. A., “Otsenki resheniya anizotropnogo parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Ufimsk. matem. zhurn., 3:4 (2011), 64–85 | Zbl

[7] Tedeev A. F., “Stabilizatsiya reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh uravnenii”, Ukr. mat. zhurn., 44:10 (1992), 1441–1450 | MR | Zbl

[8] N. Alikakos, R. Rostamian, “Gradient estimates for degenerate diffusion equation, II”, Proc. Roy. Soc. Edinburgh, 91:3–4 (1981/1982), 335–346 | MR

[9] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl

[10] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 596 pp. | MR

[11] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 2, IIL, M., 1954