A version of discrete Haar transform with nodes of $\Pi_0$-grids
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A version of the two-dimensional discrete Haar transform with $2^D$ nodes forming $\Pi_0$-grid associated with the triangular partial sums of Fourier–Haar series of a given function is proposed. Due to the structure the of $\Pi_0$-grids, the computation of coefficients of this discrete transform is based on a cubature formula with $ 2 ^ D $ nodes being exact for Haar polynomials of degree at most $ D $, owing to that all the coefficients $A_{m_1,m_2}^{(j_1, j_2)}$ of the constructed transform coincide with the Fourier–Haar coefficients $c_{m_1, m_2}^{(j_1, j_2)}$ for Haar polynomials of degree at most $D-\max \{m_1, m_2 \}$ ($ {0 \leqslant m_1 + m_2 \leqslant d }$, where ${ d \leqslant D }$). The standard two-dimensional discrete Haar transform with $ 2 ^ D $ nodes does not possess this property.
Keywords: cubature formulas exact for Haar polynomials, discrete Haar transform, $\Pi_0$-grids.
@article{UFA_2013_5_1_a4,
     author = {K. A. Kirillov and M. V. Noskov},
     title = {A version of discrete {Haar} transform with nodes of $\Pi_0$-grids},
     journal = {Ufa mathematical journal},
     pages = {56--62},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a4/}
}
TY  - JOUR
AU  - K. A. Kirillov
AU  - M. V. Noskov
TI  - A version of discrete Haar transform with nodes of $\Pi_0$-grids
JO  - Ufa mathematical journal
PY  - 2013
SP  - 56
EP  - 62
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a4/
LA  - en
ID  - UFA_2013_5_1_a4
ER  - 
%0 Journal Article
%A K. A. Kirillov
%A M. V. Noskov
%T A version of discrete Haar transform with nodes of $\Pi_0$-grids
%J Ufa mathematical journal
%D 2013
%P 56-62
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a4/
%G en
%F UFA_2013_5_1_a4
K. A. Kirillov; M. V. Noskov. A version of discrete Haar transform with nodes of $\Pi_0$-grids. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 56-62. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a4/

[1] Kashkin V. B., Noskov M. V., Osipov N. N., “Variant diskretnogo preobrazovaniya Fure s uzlami na parallelepipedalnykh setkakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 41:3 (2001), 355–359 | MR | Zbl

[2] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[3] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969, 288 pp. | MR

[4] M. V. Noskov, K. A. Kirillov, “Minimal cubature formulas exact for Haar polynomials”, Journal of Approximation Theory, 162:3, March (2010), 615–627 | DOI | MR | Zbl

[5] Kirillov K. A., Noskov M. V., “Minimalnye kvadraturnye formuly, tochnye dlya polinomov Khaara”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:6 (2002), 791–799 | MR | Zbl