On analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 36-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the spectral properties of the operator $L_\beta$ associated with the quadratic form $\mathcal{L}_\beta=\int\limits_{0}^{\infty}(|y'|^2-\beta x^{-\gamma}|y|^2)dx$ with the domain ${Q_0=\{y\in W_2^1(0,+\infty): y(0)=0\}}$, $0\gamma2$, $\beta\in \mathbf{C}$, as well as of the perturbed operator $M_\beta=L_\beta+W$. Under the assumption $(1+x^{\gamma/2})W\in L^1(0,+\infty)$ we prove the existence of finite quantum defect of the discrete spectrum that was established earlier by L. A. Sakhnovich as $\beta>0$, $\gamma=1$ and for real $W$ satisfying a more strict decaying condition at infinity. The main result of the paper is the proof of necessity (with some reservations) of the sufficient conditions for $W(x)$ obtained earlier by Kh. Kh. Murtazin under which the Weyl function of the operator $M_\beta$ possesses an analytic continuation on some angle from non-physical sheet.
Keywords:
spectral instability, localization of spectrum, quantum defect, Weyl function
Mots-clés : Darboux transformation.
Mots-clés : Darboux transformation.
@article{UFA_2013_5_1_a3,
author = {Kh. K. Ishkin},
title = {On analytic properties of {Weyl} function of {Sturm--Liouville} operator with a decaying complex potential},
journal = {Ufa mathematical journal},
pages = {36--55},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/}
}
TY - JOUR AU - Kh. K. Ishkin TI - On analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential JO - Ufa mathematical journal PY - 2013 SP - 36 EP - 55 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/ LA - en ID - UFA_2013_5_1_a3 ER -
Kh. K. Ishkin. On analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 36-55. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/