On analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 36-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral properties of the operator $L_\beta$ associated with the quadratic form $\mathcal{L}_\beta=\int\limits_{0}^{\infty}(|y'|^2-\beta x^{-\gamma}|y|^2)dx$ with the domain ${Q_0=\{y\in W_2^1(0,+\infty): y(0)=0\}}$, $0\gamma2$, $\beta\in \mathbf{C}$, as well as of the perturbed operator $M_\beta=L_\beta+W$. Under the assumption $(1+x^{\gamma/2})W\in L^1(0,+\infty)$ we prove the existence of finite quantum defect of the discrete spectrum that was established earlier by L. A. Sakhnovich as $\beta>0$, $\gamma=1$ and for real $W$ satisfying a more strict decaying condition at infinity. The main result of the paper is the proof of necessity (with some reservations) of the sufficient conditions for $W(x)$ obtained earlier by Kh. Kh. Murtazin under which the Weyl function of the operator $M_\beta$ possesses an analytic continuation on some angle from non-physical sheet.
Keywords: spectral instability, localization of spectrum, quantum defect, Weyl function
Mots-clés : Darboux transformation.
@article{UFA_2013_5_1_a3,
     author = {Kh. K. Ishkin},
     title = {On  analytic properties of {Weyl} function of {Sturm--Liouville} operator with a decaying complex potential},
     journal = {Ufa mathematical journal},
     pages = {36--55},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
TI  - On  analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential
JO  - Ufa mathematical journal
PY  - 2013
SP  - 36
EP  - 55
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/
LA  - en
ID  - UFA_2013_5_1_a3
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%T On  analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential
%J Ufa mathematical journal
%D 2013
%P 36-55
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/
%G en
%F UFA_2013_5_1_a3
Kh. K. Ishkin. On  analytic properties of Weyl function of Sturm--Liouville operator with a decaying complex potential. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 36-55. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a3/