Generalized functions asymptotically homogeneous with respect to one–parametric group at origin
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we obtain a complete description of generalized functions asymptotically homogeneous at origin w.r.t. a multiplicative one–parametric group of transformations so that the real parts of all the eigenvalues of infinitesimal matrix are positive including the case of critical orders. The obtained results are applied for constructing homogeneous solutions to differential equations whose symbols are quasi-homogeneous polynomials w.r.t. this group in a non-critical case.
Keywords: generalized functions, homogeneous functions, quasi-asymptotics, partial differential equations.
@article{UFA_2013_5_1_a2,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Generalized functions asymptotically homogeneous with respect to one{\textendash}parametric group at origin},
     journal = {Ufa mathematical journal},
     pages = {17--35},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Generalized functions asymptotically homogeneous with respect to one–parametric group at origin
JO  - Ufa mathematical journal
PY  - 2013
SP  - 17
EP  - 35
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a2/
LA  - en
ID  - UFA_2013_5_1_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Generalized functions asymptotically homogeneous with respect to one–parametric group at origin
%J Ufa mathematical journal
%D 2013
%P 17-35
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a2/
%G en
%F UFA_2013_5_1_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Generalized functions asymptotically homogeneous with respect to one–parametric group at origin. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a2/

[1] Drozhzhinov Yu. N., Zavyalov B. I., “Asimptoticheski kvaziodnorodnye obobschennye funktsii v nachale koordinat”, Ufimskii mat. zhurn., 1:4 (2009), 33–66 | MR | Zbl

[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959

[3] Drozhzhinov Yu. N., Zavyalov B. I., “Asimptoticheski odnorodnye obobschennye funktsii po spetsialnym grupp preobrazovanii”, Mat. sbornik, 200:6 (2009), 23–66 | DOI | MR | Zbl

[4] Drozhzhinov Yu. N., Zavyalov B. I., “Asimptoticheski kvaziodnorodnye obobschennye funktsii v nule i uravneniya v svertkakh s yadrami, simvoly kotorykh kvaziodnorodnye mnogochleny”, Doklady RAN, 426:3 (2009), 300–303 | MR | Zbl

[5] Drozhzhinov Yu. N., Zavyalov B. I., “Obobschennye funktsii, asimptoticheski odnorodnye po traektoriyam, opredelyaemym odnoparametricheskimi gruppami”, Izvestiya RAN, ser. matemat., 76:3, 39–91 | DOI | MR

[6] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[7] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[8] O. Grudzinski, Quazihomogeneous Distribution, North-Holland mathematics studies, 165, North-Holland, Amsterdam, 1991 | Zbl

[9] L. Hörmander, “On the division of distribution by polynomials”, Ark. math., 3:6 (1958), 555–568 | DOI | MR | Zbl

[10] Yu. N. Drozhzhinov, B. I. Zavialov, “Homogeneous Generalized Functions with Respect to One-Parametric Group”, $p$-Adic Numbers, Ultrametric Analysis and Applications, 4:1 (2012), 20–31 | DOI | MR