Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 125-129
Voir la notice de l'article provenant de la source Math-Net.Ru
Conic flows are the invariant rank 1 solutions of the gasdynamics equations on the three-dimensional subalgebra defined by the rotation operators, translation by time and uniform dilatation. The generalization of the conic flows are partially invariant solutions of rank 1 defect 2 on the five-dimensional overalgebra of conic subalgebra extended by the operators of space translations noncommuting with rotation. We prove that that the extensions of conic flows are reduced either to function-invariant plane stationary solutions or to a double wave of isobaric motions or to the simple wave.
Keywords:
gas dynamics, conic flows, partially invariant solutions.
@article{UFA_2013_5_1_a10,
author = {S. V. Khabirov},
title = {Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra},
journal = {Ufa mathematical journal},
pages = {125--129},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/}
}
TY - JOUR AU - S. V. Khabirov TI - Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra JO - Ufa mathematical journal PY - 2013 SP - 125 EP - 129 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/ LA - en ID - UFA_2013_5_1_a10 ER -
%0 Journal Article %A S. V. Khabirov %T Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra %J Ufa mathematical journal %D 2013 %P 125-129 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/ %G en %F UFA_2013_5_1_a10
S. V. Khabirov. Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 125-129. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/