Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 125-129

Voir la notice de l'article provenant de la source Math-Net.Ru

Conic flows are the invariant rank 1 solutions of the gasdynamics equations on the three-dimensional subalgebra defined by the rotation operators, translation by time and uniform dilatation. The generalization of the conic flows are partially invariant solutions of rank 1 defect 2 on the five-dimensional overalgebra of conic subalgebra extended by the operators of space translations noncommuting with rotation. We prove that that the extensions of conic flows are reduced either to function-invariant plane stationary solutions or to a double wave of isobaric motions or to the simple wave.
Keywords: gas dynamics, conic flows, partially invariant solutions.
@article{UFA_2013_5_1_a10,
     author = {S. V. Khabirov},
     title = {Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra},
     journal = {Ufa mathematical journal},
     pages = {125--129},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra
JO  - Ufa mathematical journal
PY  - 2013
SP  - 125
EP  - 129
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/
LA  - en
ID  - UFA_2013_5_1_a10
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra
%J Ufa mathematical journal
%D 2013
%P 125-129
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/
%G en
%F UFA_2013_5_1_a10
S. V. Khabirov. Reductions of partially invariant solutions of rank~1 defect~2 five-dimensional overalgebra of conical subalgebra. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 125-129. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a10/