Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 11-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider finite difference schemes for diffusion equation of fractional order in a multidimensional field with third type boundary conditions. We prove the stability and convergence of difference schemes for considered problem.
Keywords: finite-difference schemes, apriori estimate, maximum principle, third type boundary conditions, stability and convergence of finite-difference scheme.
Mots-clés : diffusion equation of fractional order
@article{UFA_2013_5_1_a1,
     author = {A. K. Bazzaev},
     title = {Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain},
     journal = {Ufa mathematical journal},
     pages = {11--16},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a1/}
}
TY  - JOUR
AU  - A. K. Bazzaev
TI  - Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain
JO  - Ufa mathematical journal
PY  - 2013
SP  - 11
EP  - 16
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a1/
LA  - en
ID  - UFA_2013_5_1_a1
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%T Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain
%J Ufa mathematical journal
%D 2013
%P 11-16
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a1/
%G en
%F UFA_2013_5_1_a1
A. K. Bazzaev. Finite-difference schemes for diffusion equation of fractional order with third type boundary conditions in multidimensional domain. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 11-16. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a1/

[1] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[2] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya v fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | MR | Zbl

[3] Nigmatullin R. R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoreticheskaya i matem. fizika, 90:3 (1992) | MR | Zbl

[4] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR

[5] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[6] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208 | MR | Zbl

[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, 2006, 523 pp. | MR | Zbl

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[9] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl