Compactness criterion for fractional integration operator of infinitesimal order
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain necessary and sufficient conditions of compactness for the operator $$Kf(x)=\int\limits_{0}^{x}\ln\frac{x}{x-s}\frac{f(s)}{s}ds$$ from $L_{p,v}$ in $L_{q,u}$ at $1$ and $v(x)=x^{-\gamma}$, $\gamma>0$, where $L_{q,u}$ is the set of all measurable on $(0, \infty)$ functions $f$ with finite norm $\|uf\|_{q}$.
Keywords: compactness, fractional integration operator, Riemann–Liouville operator, singular operator, adjoint operator, Holder inequality, weighted inequalities.
@article{UFA_2013_5_1_a0,
     author = {A. M. Abylayeva and A. O. Baiarystanov},
     title = {Compactness criterion for fractional integration operator of infinitesimal order},
     journal = {Ufa mathematical journal},
     pages = {3--10},
     year = {2013},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/}
}
TY  - JOUR
AU  - A. M. Abylayeva
AU  - A. O. Baiarystanov
TI  - Compactness criterion for fractional integration operator of infinitesimal order
JO  - Ufa mathematical journal
PY  - 2013
SP  - 3
EP  - 10
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/
LA  - en
ID  - UFA_2013_5_1_a0
ER  - 
%0 Journal Article
%A A. M. Abylayeva
%A A. O. Baiarystanov
%T Compactness criterion for fractional integration operator of infinitesimal order
%J Ufa mathematical journal
%D 2013
%P 3-10
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/
%G en
%F UFA_2013_5_1_a0
A. M. Abylayeva; A. O. Baiarystanov. Compactness criterion for fractional integration operator of infinitesimal order. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/

[1] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 21, VINITI AN SSSR, M., 1983, 42–129 | MR

[2] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey, 2003 | MR | Zbl

[3] Oinarov R., “Ogranichennost i kompaktnost integralnykh operatorov volterovskogo tipa”, Sibirskii matematicheskii zhurnal, 48:5 (2007), 1100–1115 | MR | Zbl

[4] K. F. Andersen, E. T. Sawyer, “Weighted norm inegualities for the Riemann–Liouville and Weyl fractional integral operators”, Trans. Amer. Math. Soc., 308:2 (1988), 547–557 | DOI | MR

[5] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 61:2 (2000), 617–628 | DOI | MR | Zbl

[6] A. Meskhi, “Solution of some weight problems for the Riemann–Liouville and Weil operators”, Georgian Math. J., 1998, no. 5, 565–574 | DOI | MR | Zbl

[7] Prokhorov D. V., Stepanov V. D., “Operatory Rimmana–Liuvillya”, Doklady RAN, 382:4 (2002), 452–455 | MR | Zbl

[8] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995 | Zbl

[9] Abylaeva A. M., Omirbek M. Zh., “Vesovaya otsenka dlya integralnogo operatora s logarifmicheskoi osobennostyu”, Izvestiya, seriya fiziko-matematicheskaya, 2005, no. 1, 38–47 | MR

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1977 | MR

[12] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl