Compactness criterion for fractional integration operator of infinitesimal order
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain necessary and sufficient conditions of compactness for the operator
$$Kf(x)=\int\limits_{0}^{x}\ln\frac{x}{x-s}\frac{f(s)}{s}ds$$
from $L_{p,v}$ in $L_{q,u}$ at $1$ and
$v(x)=x^{-\gamma}$, $\gamma>0$, where $L_{q,u}$ is the set of all measurable on $(0, \infty)$ functions $f$ with finite norm $\|uf\|_{q}$.
Keywords:
compactness, fractional integration operator, Riemann–Liouville operator, singular operator, adjoint operator, Holder inequality, weighted inequalities.
@article{UFA_2013_5_1_a0,
author = {A. M. Abylayeva and A. O. Baiarystanov},
title = {Compactness criterion for fractional integration operator of infinitesimal order},
journal = {Ufa mathematical journal},
pages = {3--10},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/}
}
TY - JOUR AU - A. M. Abylayeva AU - A. O. Baiarystanov TI - Compactness criterion for fractional integration operator of infinitesimal order JO - Ufa mathematical journal PY - 2013 SP - 3 EP - 10 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/ LA - en ID - UFA_2013_5_1_a0 ER -
A. M. Abylayeva; A. O. Baiarystanov. Compactness criterion for fractional integration operator of infinitesimal order. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/