Compactness criterion for fractional integration operator of infinitesimal order
Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions of compactness for the operator $$Kf(x)=\int\limits_{0}^{x}\ln\frac{x}{x-s}\frac{f(s)}{s}ds$$ from $L_{p,v}$ in $L_{q,u}$ at $1$ and $v(x)=x^{-\gamma}$, $\gamma>0$, where $L_{q,u}$ is the set of all measurable on $(0, \infty)$ functions $f$ with finite norm $\|uf\|_{q}$.
Keywords: compactness, fractional integration operator, Riemann–Liouville operator, singular operator, adjoint operator, Holder inequality, weighted inequalities.
@article{UFA_2013_5_1_a0,
     author = {A. M. Abylayeva and A. O. Baiarystanov},
     title = {Compactness criterion for fractional integration operator of infinitesimal order},
     journal = {Ufa mathematical journal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/}
}
TY  - JOUR
AU  - A. M. Abylayeva
AU  - A. O. Baiarystanov
TI  - Compactness criterion for fractional integration operator of infinitesimal order
JO  - Ufa mathematical journal
PY  - 2013
SP  - 3
EP  - 10
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/
LA  - en
ID  - UFA_2013_5_1_a0
ER  - 
%0 Journal Article
%A A. M. Abylayeva
%A A. O. Baiarystanov
%T Compactness criterion for fractional integration operator of infinitesimal order
%J Ufa mathematical journal
%D 2013
%P 3-10
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/
%G en
%F UFA_2013_5_1_a0
A. M. Abylayeva; A. O. Baiarystanov. Compactness criterion for fractional integration operator of infinitesimal order. Ufa mathematical journal, Tome 5 (2013) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2013_5_1_a0/