Nonisomorphic Lie algebras admitted by gasdynamic models
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 85-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Group classification of gasdynamic equations by the state equation consists of 13 types of finite-dimensional Lie algebras of different dimensions, from 11 to 14. Some types depend on a parameter. Five pairs of Lie algebras appear to be equivalent. The equivalent transformations for Lie algebras contain the equivalent transformations for gasdynamic equations. The equivalence test resulted in nine nonisomorphic Lie algebras with different structures. One type has 3 different structures for different parameters. Each of these Lie algebras is represented as a semidirect sum of a six-dimensional Abeilian ideal with a subalgebra, which is decomposed into a semidirect or direct sum in its turn. The optimal systems for subalgebras are constructed. The Abeilian ideal is added in 6 cases while constructing the optimal system. There remain 3 Lie algebras of the dimensions 12, 13, 14 for which the optimal systems are not constructed.
Keywords: gas dynamics, Lie algebra, optimal system.
Mots-clés : equivalent transformation
@article{UFA_2011_3_2_a8,
     author = {S. V. Khabirov},
     title = {Nonisomorphic {Lie} algebras admitted by gasdynamic models},
     journal = {Ufa mathematical journal},
     pages = {85--88},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a8/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Nonisomorphic Lie algebras admitted by gasdynamic models
JO  - Ufa mathematical journal
PY  - 2011
SP  - 85
EP  - 88
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a8/
LA  - en
ID  - UFA_2011_3_2_a8
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Nonisomorphic Lie algebras admitted by gasdynamic models
%J Ufa mathematical journal
%D 2011
%P 85-88
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a8/
%G en
%F UFA_2011_3_2_a8
S. V. Khabirov. Nonisomorphic Lie algebras admitted by gasdynamic models. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 85-88. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a8/

[1] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[2] S. Khabirov, “Optimal systems of symmetry subalgebras for big models of gasdynamics”, Selşuk Journal of Applied Mathematics, 3:2 (2002), 65–80 | MR | Zbl

[3] Khabirov S. V., Optimalnye sistemy podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki, Preprint, Institut mekhaniki UNTs RAN, Ufa, 1998, 33 pp.

[4] Makarevich E. V., “Optimalnaya sistema podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravnenii sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 2 (2011), 19–38 http://semr.math.nsc.ru | MR

[5] Golovin C. V., Optimalnaya sistema podalgebr dlya algebry operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint No 5-96, Institut gidrodinamiki, Sibirskoe otdelenie RAN, Novosibirsk, 1996, 31 pp.

[6] Cherevko A. A., Optimalnaya sistema poalgebr dlya algebry operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravneniya sostonyaiya $p=f(S)\rho^{5/3}$, Preprint No 4-96, Institut gidrodinamiki, Sibirskoe otdelenie RAN, Novosibirsk, 1996, 39 pp.