Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 79-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear partial differential equation modelling evolution of a free surface of the filtered fluid $$ \lambda u_t-\Delta_2u_t=\alpha\Delta_2u-\beta\Delta^2_2u+f $$ is considered. Here $u(x,y,t)$ is the searched function characterizing the fluid pressure, $f=f(x,y,t)$ is the given function calculating an external influence on the filtration flow, $\Delta_2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplace differential operator, $\lambda,\alpha,\beta$ are positive constants depending on characteristics of the watery soil. The explicit solution to the Cauchy problem for the above linear partial differential equation is obtained in the space $L_p(R^2)$, $1$, by means of reducing the considered filtration problem to the abstract Cauchy problem in a Banach space. Solution of the corresponding homogeneous equation with respect to the temporary variable $t$ satisfies the semi-group property. The resulting estimation of the solution to the Cauchy problem in the space $L_p(R^2)$, $1$, entails that the solution is continuously dependent on the initial data in any finite time interval.
Keywords: free surface of the filtered fluid, strongly continuous semi-groups of operators.
@article{UFA_2011_3_2_a7,
     author = {Kh. G. Umarov},
     title = {Explicit solution of the {Cauchy} problem to the equation for groundwater motion with a~free surface},
     journal = {Ufa mathematical journal},
     pages = {79--84},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a7/}
}
TY  - JOUR
AU  - Kh. G. Umarov
TI  - Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface
JO  - Ufa mathematical journal
PY  - 2011
SP  - 79
EP  - 84
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a7/
LA  - en
ID  - UFA_2011_3_2_a7
ER  - 
%0 Journal Article
%A Kh. G. Umarov
%T Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface
%J Ufa mathematical journal
%D 2011
%P 79-84
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a7/
%G en
%F UFA_2011_3_2_a7
Kh. G. Umarov. Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 79-84. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a7/

[1] Dzektser E. S., “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl

[2] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl

[3] Sviridyuk G. A., Zagrebina S. A., “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gos. un-ta. Seriya “Matematika”, 3:1 (2010), 104–125 | Zbl

[4] Umarov Kh. G., Yavnyi vid resheniya uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu, Dep. v VINITI 24.05.10 No 304-B2010, Chechenskii gos. un-t, Groznyi, 2010, 26 pp.

[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1987, 464 pp. | MR | Zbl

[6] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983, 752 pp. | MR | Zbl

[8] Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp. | MR