@article{UFA_2011_3_2_a6,
author = {S. G. Merzlyakov},
title = {Integrals of exponential functions with respect to {Radon} measure},
journal = {Ufa mathematical journal},
pages = {56--78},
year = {2011},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/}
}
S. G. Merzlyakov. Integrals of exponential functions with respect to Radon measure. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 56-78. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/
[1] E. Hille, “Note on Dirichlet's series with complex exponents”, Ann. of Math. (2), 25:3 (1924), 261–278 | DOI | MR | Zbl
[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR
[3] Krivosheeva O. A., “Ryady eksponentsialnykh monomov v kompleksnykh oblastyakh”, Vestnik UGATU. Matematika, 9:3(21) (2007), 96–104
[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.
[5] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Kishinev, 1978, 280 pp. | MR
[6] Krasichkov-Ternovskii I. F., “Spektralnyi sintez i analiticheskoe prodolzhenie”, UMN, 58:1(349) (2003), 33–112 | DOI | MR | Zbl
[7] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR
[8] S. Hansen, “On the “fundamental principle” of L. Ehrenpreis”, Partial Differential Equations, Banach Center Publ., 10, PWN, 1983, 185–201 | MR