Integrals of exponential functions with respect to Radon measure
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 56-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of sets of convergence for integrals of exponential functions in a finite-dimensional Euclidean space are studied in the paper. It is shown that these sets are always convex. In particular, these sets include the sets of absolute convergence of series of exponential functions. A special class of convex sets is introduced and a complete description of sets of convergence is obtained for the case of open and relatively close convex sets in terms of this class. Necessary and sufficient conditions for any set of convergence to be open and independently unbounded are formulated.
Keywords: convex sets, Radon measure, Laplace integrals, absolutely convergent series of exponentials.
@article{UFA_2011_3_2_a6,
     author = {S. G. Merzlyakov},
     title = {Integrals of exponential functions with respect to {Radon} measure},
     journal = {Ufa mathematical journal},
     pages = {56--78},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Integrals of exponential functions with respect to Radon measure
JO  - Ufa mathematical journal
PY  - 2011
SP  - 56
EP  - 78
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/
LA  - en
ID  - UFA_2011_3_2_a6
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Integrals of exponential functions with respect to Radon measure
%J Ufa mathematical journal
%D 2011
%P 56-78
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/
%G en
%F UFA_2011_3_2_a6
S. G. Merzlyakov. Integrals of exponential functions with respect to Radon measure. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 56-78. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a6/

[1] E. Hille, “Note on Dirichlet's series with complex exponents”, Ann. of Math. (2), 25:3 (1924), 261–278 | DOI | MR | Zbl

[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[3] Krivosheeva O. A., “Ryady eksponentsialnykh monomov v kompleksnykh oblastyakh”, Vestnik UGATU. Matematika, 9:3(21) (2007), 96–104

[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[5] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Kishinev, 1978, 280 pp. | MR

[6] Krasichkov-Ternovskii I. F., “Spektralnyi sintez i analiticheskoe prodolzhenie”, UMN, 58:1(349) (2003), 33–112 | DOI | MR | Zbl

[7] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[8] S. Hansen, “On the “fundamental principle” of L. Ehrenpreis”, Partial Differential Equations, Banach Center Publ., 10, PWN, 1983, 185–201 | MR