Inverse problem for forward-backward parabolic equation with generalized conjugation conditions
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 33-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse problem of finding the solution and the right-hand side member of a second order forward-backward parabolic equation with generalized conjugation conditions is considered. Generalized conjugation conditions ensure the symmetry of the problem and provide an opportunity to apply the Hilbert–Schmidt theorem. The system of eigenfunctions is complete and orthogonal. All the eigenvalues of this operator are real and are found by solving a transcendental equation. Using expansion series, we prove the existence and uniqueness of classical solutions of this problem.
Keywords: inverse problem, forward-backward parabolic equation, generalized sewing conditions.
@article{UFA_2011_3_2_a4,
     author = {I. A. Kaliev and M. F. Mugafarov and O. V. Fattahova},
     title = {Inverse problem for forward-backward parabolic equation with generalized conjugation conditions},
     journal = {Ufa mathematical journal},
     pages = {33--41},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a4/}
}
TY  - JOUR
AU  - I. A. Kaliev
AU  - M. F. Mugafarov
AU  - O. V. Fattahova
TI  - Inverse problem for forward-backward parabolic equation with generalized conjugation conditions
JO  - Ufa mathematical journal
PY  - 2011
SP  - 33
EP  - 41
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a4/
LA  - en
ID  - UFA_2011_3_2_a4
ER  - 
%0 Journal Article
%A I. A. Kaliev
%A M. F. Mugafarov
%A O. V. Fattahova
%T Inverse problem for forward-backward parabolic equation with generalized conjugation conditions
%J Ufa mathematical journal
%D 2011
%P 33-41
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a4/
%G en
%F UFA_2011_3_2_a4
I. A. Kaliev; M. F. Mugafarov; O. V. Fattahova. Inverse problem for forward-backward parabolic equation with generalized conjugation conditions. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 33-41. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a4/

[1] M. Gevrey, “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl., 4 (1914), 105–137

[2] C. D. Pagani, G. Talenti, “On a forward-backward differential equation”, Annali di Matematica pura et Applicata, 90:4 (1971), 1–58 | DOI | MR

[3] Kerefov A. A., “Zadacha Zhevre dlya odnogo smeshanno-parabolicheskogo uravneniya”, Differents. uravneniya, 13:1 (1977), 76–83 | MR | Zbl

[4] Pyatkov S. G., “O razreshimosti odnoi kraevoi zadachi dlya parabolicheskogo uravneniya s menyayuschimsya napravleniem vremeni”, Dokl. AN SSSR, 285:6 (1985), 1327–1329 | MR | Zbl

[5] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985, 105 pp. | MR | Zbl

[6] Kislov N. V., Pulkin I. S., “O suschestvovanii i edinstvennosti slabogo resheniya zadachi Zhevre s obobschennymi usloviyami skleiki”, Vestn. MEI, 2002, no. 6, 88–92

[7] I. Pulkin, “Gevrey problem for parabolic equations with changing time direction”, Electronic Journal of Differential Equations, 2006, 50, 1–9 pp. | MR | Zbl

[8] Bubnov B. A., “Suschestvovanie i edinstvennost resheniya obratnykh zadach dlya parabolicheskikh i ellipticheskikh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Izdatelstvo instituta matematiki, Novosibirsk, 1986, 25–29 | MR

[9] Anikonov Yu. E., Belov Yu. Ya., “Ob odnoznachnoi razreshimosti odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, Doklady Akademii nauk SSSR, 306:6 (1989), 1289–1293 | MR | Zbl

[10] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matematicheskii sbornik, 183:4 (1992), 49–68 | MR | Zbl

[11] Goldman N. L., “Obratnaya zadacha s finalnym pereopredeleniem dlya kvazilineinogo parabolicheskogo uravneniya s neizvestnoi pravoi chastyu”, Vychislitelnye metody i programmirovanie, 4:1 (2003), 155–166

[12] Kaliev I. A., Pervushina M. M., “Obratnye zadachi dlya uravneniya teploprovodnosti”, Sovremennye problemy fiziki i matematiki, Trudy Vserossiiskoi konferentsii, v. 1, Gilem, 2004, 50–55

[13] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:4 (2004), 694–716 | MR | Zbl

[14] Kaliev I. A., Pervushina M. M., “Zadachi opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sibirskii zhurnal industrialnoi matematiki (Novosibirsk), 12:1(37) (2009), 89–97 | MR | Zbl

[15] Yanenko N. N., Novikov V. A., “Ob odnoi modeli zhidkosti s znakoperemennym koeffitsientom vyazkosti”, Chislennye metody mekhaniki sploshnoi sredy, 4, no. 2, VTs SO AN SSSR, Novosibirsk, 1973, 142–147

[16] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 pp. | MR