Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 27-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to a spectral problem for a multiple differentiation operator with an integral perturbation of boundary conditions of one type which are regular, but not strongly regular. The unperturbed problem has an asymptotically simple spectrum, and its system of normalized eigenfunctions creates the Riesz basis. We construct the characteristic determinant of the spectral problem with an integral perturbation of the boundary conditions. The perturbed problem can have any finite number of multiple eigenvalues. Therefore, its root subspaces consist of its eigen and (maybe) adjoint functions. It is shown that the Riesz basis property of a system of eigen and adjoint functions is stable with respect to integral perturbations of the boundary condition.
Keywords: Riesz basis, regular boundary conditions, eigenvalues, root functions, spectral problem, integral perturbation of boundary condition, characteristic determinant.
@article{UFA_2011_3_2_a3,
     author = {N. S. Imanbaev and M. A. Sadybekov},
     title = {Stability of basis property of a~type of problems on eigenvalues with nonlocal perturbation of boundary conditions},
     journal = {Ufa mathematical journal},
     pages = {27--32},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a3/}
}
TY  - JOUR
AU  - N. S. Imanbaev
AU  - M. A. Sadybekov
TI  - Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions
JO  - Ufa mathematical journal
PY  - 2011
SP  - 27
EP  - 32
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a3/
LA  - en
ID  - UFA_2011_3_2_a3
ER  - 
%0 Journal Article
%A N. S. Imanbaev
%A M. A. Sadybekov
%T Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions
%J Ufa mathematical journal
%D 2011
%P 27-32
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a3/
%G en
%F UFA_2011_3_2_a3
N. S. Imanbaev; M. A. Sadybekov. Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 27-32. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a3/

[1] Markus A. S., “O razlozhenii po kornevym vektoram slabo vozmuschennogo samosopryazhennogo operatora”, Dokl. AN SSSR, 142:3 (1962), 538–541 | MR | Zbl

[2] Kerimov N. B., Mamedov Kh. R., “O bazisnosti Rissa kornevykh funktsii nekotorykh regulyarnykh kraevykh zadach”, Matem. zametki, 64:4 (1998), 558–563 | DOI | MR | Zbl

[3] Makin A. S., “O nelokalnom vozmuschenii periodicheskoi zadachi na sobstvennye znacheniya”, Differents. uravneniya, 42:4 (2006), 560–562 | MR | Zbl

[4] Ilin V. A., Kritskov L. V., “Svoistva spektralnykh razlozhenii, otvechayuschikh nesamosopryazhennym operatoram”, Funktsionalnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 96, VINITI, M., 2006, 5–105 | MR | Zbl

[5] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestnik MGU. Matematika i mekhanika, 1982, no. 6, 12–21 | MR | Zbl

[6] Imanbaev N. S., Sadybekov M. A., “Bazisnye svoistva kornevykh funktsii nagruzhennykh differentsialnykh operatorov vtorogo poryadka”, Doklady NAN RK, 2010, no. 2, 11–13

[7] Naimark M. A., Lineinye differentsialnye operatory, M., 1969 | MR

[8] P. Lang, J. Locker, “Spectral Theory of Two-Point Differential Operators Determined by $-D^2$”, J. Math. Anal. And Appl., 146:1 (1990), 148–191 | DOI | MR | Zbl

[9] Makin A. S., “O spektralnykh razlozheniyakh, otvechayuschikh nesamosopryazhennomu operatoru Shturma–Liuvillya”, DAN, 406:1 (2006), 21–24 | MR | Zbl