About the Camassa–Holm equation with a self-consistent source
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 10-18
Cet article a éte moissonné depuis la source Math-Net.Ru
This work is devoted to solving the Camassa–Holm equation with a self-consistent source of a special type by the inverse scattering method. The main result consists in determining the evolution of the scattering data for the spectral problem associated with the Camassa–Holm equation with a self-consistent source of a special type. In contrast to the classical Camassa–Holm equation, the eigenvalues of the spectral problem are moving in problem under consideration. The resulting equalities determine the evolution of the scattering data completely; this fact allows us to apply the inverse scattering method for solving the considered problem.
Keywords:
the Camassa–Holm equation, inverse scattering problem, scattering data, eigenvalue, eigenfunction.
Mots-clés : Lax pair
Mots-clés : Lax pair
@article{UFA_2011_3_2_a1,
author = {I. I. Baltaeva and G. U. Urazboev},
title = {About the {Camassa{\textendash}Holm} equation with a~self-consistent source},
journal = {Ufa mathematical journal},
pages = {10--18},
year = {2011},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a1/}
}
I. I. Baltaeva; G. U. Urazboev. About the Camassa–Holm equation with a self-consistent source. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 10-18. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a1/
[1] A. Constantin, V. Gerdjikov, R. I. Ivanov, “Inverse Scattering Transform for the Camassa–Holm equation”, Inverse problem, 22:6 (2006), 2197–2207 | DOI | MR | Zbl
[2] Khasanov A. B., Urazboev G. U., “Integrirovanie obschego uravneniya KdF s pravoi chastyu v klasse bystroubyvayuschikh funktsii”, Uzb. matem. zhurnal (Tashkent), 2003, no. 2, 53–59 | MR
[3] V. K. Melnikov, “Integrable and nonintegrable cases of the Lax equations with a source”, Theoret and Math. Phys., 99:3 (1994), 733–737 | DOI | MR | Zbl
[4] Khasanov A. B., Urazboev G. U., “Oburavnenii sin-Gordon s samosoglasovannym istochnikom”, Mat. trudy, 11:1 (2008), 153–166 | MR | Zbl