About filtering problem of diffusion processes
Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The filtering problem of nonlinear one-dimensional diffusion processes is considered. The structures of observable and nonobservable processes are found. It is shown, that solution of the optimal filtering problem can be reduced to solution of the filtering problem for the case when a nonobservable process has a simpler structure and an observable process is the Wiener process with a random smooth trend. The equation connecting a conditional expectation for the initial filtering problem with a nonnormalized filtering density for the reduced filtering problem is obtained.
Keywords: filtering problem, filtering density.
Mots-clés : diffusion process
@article{UFA_2011_3_2_a0,
     author = {E. M. Asadullin and F. S. Nasyrov},
     title = {About filtering problem of diffusion processes},
     journal = {Ufa mathematical journal},
     pages = {3--9},
     year = {2011},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a0/}
}
TY  - JOUR
AU  - E. M. Asadullin
AU  - F. S. Nasyrov
TI  - About filtering problem of diffusion processes
JO  - Ufa mathematical journal
PY  - 2011
SP  - 3
EP  - 9
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a0/
LA  - en
ID  - UFA_2011_3_2_a0
ER  - 
%0 Journal Article
%A E. M. Asadullin
%A F. S. Nasyrov
%T About filtering problem of diffusion processes
%J Ufa mathematical journal
%D 2011
%P 3-9
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a0/
%G en
%F UFA_2011_3_2_a0
E. M. Asadullin; F. S. Nasyrov. About filtering problem of diffusion processes. Ufa mathematical journal, Tome 3 (2011) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/UFA_2011_3_2_a0/

[1] Asadullin E. M., Nasyrov F. S., “O reshenii zadachi nelineinoi filtratsii odnomernykh diffuzionnykh protsessov”, Vestnik UGATU, 12:1 (2009), 161–165

[2] Kallianpur G., Stokhasticheskaya teoriya filtratsii, Nauka, M., 1987, 320 pp. | MR | Zbl

[3] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya, 4-e izd., ispr. i dop., Izd-vo Politekhn. un-ta, SPb., 2010, 816 pp. | MR

[4] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[5] Nasyrov F. S., “Simmetrichnye integraly i stokhasticheskii analiz”, Teoriya veroyatnostei i ee primenenie, 51:3 (2006), 496–517 | DOI | MR | Zbl

[6] Nasyrov F. S., “O reshenii sistem stokhasticheskikh differentsialnykh uravnenii s mnogomernym vinerovskim protsessom”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:4 (2008), 643–644

[7] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy, Nauka, M., 1983, 208 pp. | MR

[8] H. Kunita, Nonlinear filtering problems. I. Bayes formulae and innovations, 2009

[9] H. Kunita, Nonlinear filtering problems. II. Associated stochastic partial differential equations, 2009

[10] M. Zakai, “On the optimal filtering of diffusion processes”, Z.W., 11 (1969), 230–243 | DOI | MR | Zbl