On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we investigate the question of solvability of one class of Hammerstein type $N$-order nonlinear integro-differential equations with noncompact integral operator on semi-axis in the Sobolev space $W_\infty^N(0,+\infty)$. The existence of a positive solution in $W_\infty^N(0,+\infty)$ is proved, and the limit of this solution at infinity is found. The obtained results are generalized for nonlinear equations with sum-difference kernels.
Keywords: factorization, limit of iteration, Sobolev space.
Mots-clés : polynomial
@article{UFA_2011_3_1_a9,
     author = {Kh. A. Khachatryan},
     title = {On solvability of one class high-order nonlinear integro-differential equations with {Hammerstein} type noncompact integral operator},
     journal = {Ufa mathematical journal},
     pages = {101--110},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
JO  - Ufa mathematical journal
PY  - 2011
SP  - 101
EP  - 110
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/
LA  - en
ID  - UFA_2011_3_1_a9
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
%J Ufa mathematical journal
%D 2011
%P 101-110
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/
%G en
%F UFA_2011_3_1_a9
Kh. A. Khachatryan. On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/

[1] Krasnoselskii M. A., Lyubarskii G. A., “O perekhodnykh resheniyakh nelineinykh uravnenii”, Izv. Vuzov. Matematika (KGU), 1962, no. 4, 81–85 | MR | Zbl

[2] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Moskva, 1966, 500 pp. | MR

[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Izd. fiz. mat. lit., Moskva, 1962, 394 pp. | MR

[4] Zabreiko P. P., “O nepreryvnosti nelineinogo operatora”, Sibirskii. mat. zhurnal, 5:4 (1964), 958–960 | MR

[5] Zabreiko P. P., “O nepreryvnosti i polnoi nepreryvnosti operatorov P. S. Urysona”, Doklady AN SSSR, 161:5 (1965), 1007–1010 | MR

[6] J. Banas, “Integhrable solutions of Hammerstein and Urysohn integral equations”, J. Austral. Math. Soc. A, 46 (1989), 61–68 | DOI | MR | Zbl

[7] H. Brezis, F. E. Browder, “Existence theorems for nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 81:1 (1975), 73–78 | DOI | MR | Zbl

[8] G. Emmanuele, “An existense theorem for Hammershtein integral equations”, Portugal Mathem., 51:43 (1994), 607–611 | MR | Zbl

[9] Khachatryan Kh. A., “Nekotorye dostatochnye usloviya dlya razreshimosti odnogo klassa vektornykh integrodifferentsialnykh uravnenii tipa svertki na polupryamoi”, Izvestiya NAN Armenii. Matematika, 4:5 (2008), 57–72 | MR

[10] Khachatryan Kh. A., “Postroenie netrivialnogo resheniya odnoi sistemy nelineinykh integro-differentsialnykh uravnenii”, Izvestiya NAN Armenii. Matematika, 45:2 (2010), 67–76 | MR

[11] Arabadzhyan L. G., “Ob odnom integralnom uravnenii perenosa v neodnorodnoi srede”, Diff. uravneniya, 23:9 (1987), 1618–1622 | MR | Zbl

[12] Khachatryan Kh. A., “Razreshimost odnogo klassa integro-differentsialnykh uravnenii vtorogo poryadka s monotonnoi nelineinostyu na poluosi”, Izvestiya RAN. Ser. matematicheskaya, 74:5 (2010), 191–204 | DOI | MR | Zbl

[13] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1981 | MR

[14] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, Moskva, 1977

[15] Gevorkyan G. G., Engibaryan N. B., “Novye teoremy dlya integralnogo uravneniya vosstanovleniya”, Izvestiya NAN Armenii. Matematika, 32:1 (1997), 5–20 | MR | Zbl