On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we investigate the question of solvability of one class of Hammerstein type $N$-order nonlinear integro-differential equations with noncompact integral operator on semi-axis in the Sobolev space $W_\infty^N(0,+\infty)$. The existence of a positive solution in $W_\infty^N(0,+\infty)$ is proved, and the limit of this solution at infinity is found. The obtained results are generalized for nonlinear equations with sum-difference kernels.
Keywords: factorization, limit of iteration, Sobolev space.
Mots-clés : polynomial
@article{UFA_2011_3_1_a9,
     author = {Kh. A. Khachatryan},
     title = {On solvability of one class high-order nonlinear integro-differential equations with {Hammerstein} type noncompact integral operator},
     journal = {Ufa mathematical journal},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
JO  - Ufa mathematical journal
PY  - 2011
SP  - 101
EP  - 110
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/
LA  - en
ID  - UFA_2011_3_1_a9
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
%J Ufa mathematical journal
%D 2011
%P 101-110
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/
%G en
%F UFA_2011_3_1_a9
Kh. A. Khachatryan. On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/