On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we investigate the question of solvability of one class of Hammerstein type $N$-order nonlinear integro-differential equations with noncompact integral operator on semi-axis in the Sobolev space $W_\infty^N(0,+\infty)$. The existence of a positive solution in $W_\infty^N(0,+\infty)$ is proved, and the limit of this solution at infinity is found. The obtained results are generalized for nonlinear equations with sum-difference kernels.
Keywords:
factorization, limit of iteration, Sobolev space.
Mots-clés : polynomial
Mots-clés : polynomial
@article{UFA_2011_3_1_a9,
author = {Kh. A. Khachatryan},
title = {On solvability of one class high-order nonlinear integro-differential equations with {Hammerstein} type noncompact integral operator},
journal = {Ufa mathematical journal},
pages = {101--110},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/}
}
TY - JOUR AU - Kh. A. Khachatryan TI - On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator JO - Ufa mathematical journal PY - 2011 SP - 101 EP - 110 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/ LA - en ID - UFA_2011_3_1_a9 ER -
%0 Journal Article %A Kh. A. Khachatryan %T On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator %J Ufa mathematical journal %D 2011 %P 101-110 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/ %G en %F UFA_2011_3_1_a9
Kh. A. Khachatryan. On solvability of one class high-order nonlinear integro-differential equations with Hammerstein type noncompact integral operator. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a9/