On the growth of the maximum modulus of an entire function depending on the growth of its central index
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 92-100
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $h$ be a positive function continuous on $(0,+\infty)$, $f(z)=\sum_{n=0}^\infty a_nz^n$ be an entire function, and $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\ge0\}$, and $\nu_f(r)=\max\{n\ge0\colon|a_n|r^n=\mu_f(r)\}$ be the maximum modulus, the maximal term, and the central index of the function $f$, respectively. We establish necessary and sufficient conditions for the growth of $\nu_f(r)$ under which $M_f(r)=O(\mu_f(r)h(\ln\mu_f(r)))$, $r\to+\infty$.
Keywords:
entire function, maximum modulus, central index, order, lower order.
Mots-clés : maximal term
Mots-clés : maximal term
@article{UFA_2011_3_1_a8,
author = {P. V. Filevych},
title = {On the growth of the maximum modulus of an entire function depending on the growth of its central index},
journal = {Ufa mathematical journal},
pages = {92--100},
year = {2011},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/}
}
P. V. Filevych. On the growth of the maximum modulus of an entire function depending on the growth of its central index. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 92-100. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/
[1] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978
[2] Sheremeta M. N., “O sootnosheniyakh mezhdu maksimalnym chlenom i maksimumom modulya tselogo ryada Dirikhle”, Mat. zametki, 51:5 (1992), 141–148 | MR | Zbl
[3] J. Clunie, “On integral functions having prescribed asymptotic growth”, Can. J. Math., 17:3 (1965), 396–404 | DOI | MR | Zbl
[4] Filevich P. V., “Asimptotichna povedinka tsilikh funktsii z vinyatkovimi znachennyami u spivvidnoshenni Borelya”, Ukr. mat. zhurn., 45:4 (2001), 522–530 | MR
[5] P. V. Filevych, “On the slow growth of power series convergent in the unit disk”, Mat. Studii, 16:2 (2001), 217–221 | MR | Zbl