On the growth of the maximum modulus of an entire function depending on the growth of its central index
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 92-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $h$ be a positive function continuous on $(0,+\infty)$, $f(z)=\sum_{n=0}^\infty a_nz^n$ be an entire function, and $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\ge0\}$, and $\nu_f(r)=\max\{n\ge0\colon|a_n|r^n=\mu_f(r)\}$ be the maximum modulus, the maximal term, and the central index of the function $f$, respectively. We establish necessary and sufficient conditions for the growth of $\nu_f(r)$ under which $M_f(r)=O(\mu_f(r)h(\ln\mu_f(r)))$, $r\to+\infty$.
Keywords: entire function, maximum modulus, central index, order, lower order.
Mots-clés : maximal term
@article{UFA_2011_3_1_a8,
     author = {P. V. Filevych},
     title = {On the growth of the maximum modulus of an entire function depending on the growth of its central index},
     journal = {Ufa mathematical journal},
     pages = {92--100},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/}
}
TY  - JOUR
AU  - P. V. Filevych
TI  - On the growth of the maximum modulus of an entire function depending on the growth of its central index
JO  - Ufa mathematical journal
PY  - 2011
SP  - 92
EP  - 100
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/
LA  - en
ID  - UFA_2011_3_1_a8
ER  - 
%0 Journal Article
%A P. V. Filevych
%T On the growth of the maximum modulus of an entire function depending on the growth of its central index
%J Ufa mathematical journal
%D 2011
%P 92-100
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/
%G en
%F UFA_2011_3_1_a8
P. V. Filevych. On the growth of the maximum modulus of an entire function depending on the growth of its central index. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 92-100. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a8/