Construction of functions with determined behavior $T_G(b)(z)$ at a singular point
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 83-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

I. N. Vekua developed the theory of generalized analytic functions, i.e., solutions of the equation \begin{equation} \partial_{\overline z}w+A(z)w+B(z)\overline w=0, \tag{0.1} \end{equation} where $z\in G$ ($G$, for example, is the unit disk on a complex plane) and the coefficients $A(z)$, $B(z)$ belong to $L_p(G)$, $p>2$. The Vekua theory for the solutions of $(0.1)$ is closely related to the theory of holomorphic functions due to the so-called similarity principle. In this case, the $T_G$-operator plays an important role. The $T_G$-operator is right-inverse to $\frac\partial{\partial\overline z}$, where $\frac\partial{\partial\overline z}$ is understood in Sobolev's sense. The author suggests a scheme for constructing the function $b(z)$ in the unit disk $G$ with determined behavior $T_G(b)(z)$ at a singular point $z=0$, where $T_G$ is an integral Vekua operator. The paper states the conditions for $b(z)$ under which the function $T_G(b)(z)$ is continuous.
Keywords: $T_G$-operator, singular point, modulus of continuity.
@article{UFA_2011_3_1_a7,
     author = {A. Y. Timofeev},
     title = {Construction of functions with determined behavior $T_G(b)(z)$ at a~singular point},
     journal = {Ufa mathematical journal},
     pages = {83--91},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a7/}
}
TY  - JOUR
AU  - A. Y. Timofeev
TI  - Construction of functions with determined behavior $T_G(b)(z)$ at a singular point
JO  - Ufa mathematical journal
PY  - 2011
SP  - 83
EP  - 91
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a7/
LA  - en
ID  - UFA_2011_3_1_a7
ER  - 
%0 Journal Article
%A A. Y. Timofeev
%T Construction of functions with determined behavior $T_G(b)(z)$ at a singular point
%J Ufa mathematical journal
%D 2011
%P 83-91
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a7/
%G en
%F UFA_2011_3_1_a7
A. Y. Timofeev. Construction of functions with determined behavior $T_G(b)(z)$ at a singular point. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a7/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR | Zbl

[2] Lavrentev M. A., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp.

[3] L. G. Mikhailov, A new Class of Singular Integral Equations and its Application to Differential Equation with Singular Coefficients, Academie-Verlag, Berlin, 1970 | MR

[4] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego primeneniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Izd-vo Tadzh. un-ta, Dushanbe, 1963 | MR

[5] Usmanov Z. D., “Ob odnom klasse obobschennykh sistem Koshi–Rimana s singulyarnoi tochkoi”, Sib. matem. zhurnal, 14:5 (1973), 1078–1087

[6] Usmanov Z. D., Obobschennye sistemy Koshi–Rimana s singulyarnoi tochkoi, Dushanbe, 1993, 245 pp.

[7] Z. D. Usmanov, Generalized Cauchy–Riemann systems with a singular point, Longman, Harlow, 1997 | MR | Zbl

[8] M. Reissig, A Timofeev, “Special Vekua Equations with Singular Coefficients”, Applicable Analysis, 73:1–2 (1999), 187–199 | DOI | MR | Zbl

[9] Tungatarov A., “K teorii uravneniya Karlemana–Vekua s singulyarnoi tochkoi”, Matematicheskii sbornik, 184:3 (1993), 111–120 | MR | Zbl

[10] Tungatarov A., “O nepreryvnykh resheniyakh obobschennoi sistemy Koshi–Rimana s konechnym chislom singulyarnykh tochek”, Matematicheskie zametki, 56:1 (1994), 105–115 | MR | Zbl

[11] R. Saks, “Riemann–Hilbert Problem for New Class of Model Vekua Equations with Singular Degeneration”, Applicable Analysis, 73:1–2 (1999), 201–211 | DOI | MR | Zbl

[12] M. Reissig, A. Timofeev, “Dirichlet problems for generalized Cauchy–Riemann systems with singular coefficients”, Complex Variables, 50:7–11 (2005), 653–672 | DOI | MR | Zbl

[13] Timofeev A. Yu., “Vesovye prostranstva v teorii obobschennykh uravnenii Koshi–Rimana”, Ufimskii mat. zhurn., 2:1 (2010), 110–118 | Zbl