Necessary conditions of Darboux integrability for differential-difference equations of a special kind
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 78-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work dwells upon chains of differential equations of the form $\varphi(x,u_{i+1},(u_{i+1})_x)=\psi(x,u_i,(u_i)_x)$, where $u$ depends on the discrete variable $i$ and the continuous variable $x$, and the functions $\varphi(x,y,z)$, $\psi(x,y,z)$ and $x$ are functionally-independent. We demonstrate that necessary Darboux integrability conditions for chains of the above form can be easily derived from already known results. These conditions are not sufficient but may be useful for classification of Darboux-integrable differential-difference equations. As an auxiliary result, we also prove a proposition about structure of symmetries for differential-difference equations of a more general form.
Keywords: Darboux integrability, differential-difference equations.
@article{UFA_2011_3_1_a6,
     author = {S. Ya. Startsev},
     title = {Necessary conditions of {Darboux} integrability for differential-difference equations of a~special kind},
     journal = {Ufa mathematical journal},
     pages = {78--82},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a6/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Necessary conditions of Darboux integrability for differential-difference equations of a special kind
JO  - Ufa mathematical journal
PY  - 2011
SP  - 78
EP  - 82
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a6/
LA  - en
ID  - UFA_2011_3_1_a6
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Necessary conditions of Darboux integrability for differential-difference equations of a special kind
%J Ufa mathematical journal
%D 2011
%P 78-82
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a6/
%G en
%F UFA_2011_3_1_a6
S. Ya. Startsev. Necessary conditions of Darboux integrability for differential-difference equations of a special kind. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 78-82. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a6/

[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[2] Adler V. E., Startsev S. Ya., “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | MR | Zbl

[3] I. T. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t_1)$”, J. Math. Phys., 50:10 (2009), Paper 102710, 23 pp. | DOI | MR | Zbl

[4] Yamilov R. I., “Obratimye zameny peremennykh, porozhdennye preobrazovaniyami Beklunda”, TMF, 85:3 (1990), 368–375 | MR | Zbl

[5] Sokolov V. V., “O simmetriyakh evolyutsionnykh uravnenii”, UMN, 43:5 (1988), 133–163 | MR | Zbl

[6] Startsev S. Ya., “O differentsialnykh podstanovkakh tipa preobrazovaniya Miury”, TMF, 116:3 (1998), 336–348 | DOI | MR | Zbl