Cauchy problem for the Navier--Stokes equations, Fourier method
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 51-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for the 3D Navier–Stokes equations with periodical conditions on the spatial variables is investigated. The vector functions under consideration are decomposed in Fourier series with respect to eigenfunctions of the curl operator. The problem is reduced to the Cauchy problem for Galerkin systems of ordinary differential equations with a simple structure. The program of reconstruction for these systems and numerical solutions of the Cauchy problems are realized. Several model problems are solved. The results are represented in a graphic form which illustrates the flows of the liquid. The linear homogeneous Cauchy problem is investigated in Gilbert spaces. Operator of this problem realizes isomorphism of these spaces. For a general case, some families of exact global solutions of the nonlinear Cauchy problem are found. Moreover, two Gilbert spaces with limited sequences of Galerkin approximations are written out.
Keywords: Fourier series, eigenfunctions of the curl operator, Navier–Stokes equations, Cauchy problem, Galerkin systems
Mots-clés : global solutions, Gilbert spaces.
@article{UFA_2011_3_1_a5,
     author = {R. S. Saks},
     title = {Cauchy problem for the {Navier--Stokes} equations, {Fourier} method},
     journal = {Ufa mathematical journal},
     pages = {51--77},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - Cauchy problem for the Navier--Stokes equations, Fourier method
JO  - Ufa mathematical journal
PY  - 2011
SP  - 51
EP  - 77
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/
LA  - en
ID  - UFA_2011_3_1_a5
ER  - 
%0 Journal Article
%A R. S. Saks
%T Cauchy problem for the Navier--Stokes equations, Fourier method
%J Ufa mathematical journal
%D 2011
%P 51-77
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/
%G en
%F UFA_2011_3_1_a5
R. S. Saks. Cauchy problem for the Navier--Stokes equations, Fourier method. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/