Mots-clés : global solutions, Gilbert spaces.
@article{UFA_2011_3_1_a5,
author = {R. S. Saks},
title = {Cauchy problem for the {Navier{\textendash}Stokes} equations, {Fourier} method},
journal = {Ufa mathematical journal},
pages = {51--77},
year = {2011},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/}
}
R. S. Saks. Cauchy problem for the Navier–Stokes equations, Fourier method. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/
[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 810 pp. | MR
[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 335 pp. | Zbl
[3] Ilin V. A., Izbrannye trudy, v. 1, Makspress, M., 2008, 730 pp.
[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR
[5] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR
[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 590 pp. | MR | Zbl
[7] Temam R. I., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Fazis, M., 1997, 770 pp. | MR
[8] A. Babin, A. Mahalov, B. Nicolaenko, “Global regularity of 3D rotating Navier–Stokes equations for resonant domains”, Indiana Univ. Math. J., 48:3 (1999), 1133–1176 | MR | Zbl
[9] A. Fursikov, “Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier–Stokes equations”, Discrete and continuous dynamical systems series, 3:2 (2010), 269–289 | DOI | MR | Zbl
[10] Arnold V. I., Izbrannoe-60, Fazis, M., 1997, 770 pp. | MR
[11] O. I. Bogoyavlenskij, “Infinite families of exact periodic solutions to the Navier–Stokes equations”, Moscow Mathematical Journal, 3:2 (2003), 263–272 | MR | Zbl
[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986, 736 pp. | MR
[13] S. Chandrasekhar, P. S. Kendall, “On force-free magnetic fields”, Astrophys. Journal, 126 (1957), 457–460 | DOI | MR
[14] J. B. Taylor, “Relaxation of toroidal plasma and generation of reverse magnetic fields”, Phys. Rev. Letters, 33 (1974), 1139–1141 | DOI
[15] D. Montgomery, L. Turner, G. Vahala, “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids, 21:5 (1978), 757–764 | DOI | Zbl
[16] Kozlov V. V., Obschaya teoriya vikhrei, Izd. Dom “Udmurdskii universitet”, Izhevsk, 1998, 240 pp. | MR | Zbl
[17] Pukhnachev V. V., “Simmetrii v uravneniyakh Nave–Stoksa”, Uspekhi mekhaniki, 2006, no. 1, 6–76
[18] Makhalov A. S., Nikolaenko V. P., “Globalnaya razreshimost trekhmernykh uravnenii Nave–Stoksa s ravnomerno bolshoi nachalnoi zavikhrennostyu”, Uspekhi matematicheskikh nauk, 58:2 (2003), 79–110 | DOI | MR | Zbl
[19] Ladyzhenskaya O. A., “O razlichnykh uravneniyakh dlya vyazkikh neszhimaemykh zhidkostei i ikh issledovanii”, Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki, Trudy seminara “Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki” pod rukovodstvom ak. RAN Ladyzhenskoi O. A. i prof. Saksa R. S. (Ufa, 2000), v. II, BGU, IMVTs UNTs RAN, Ufa, 2002, 89–100
[20] Saks R. S., Polyakov Yu. N., “O spektralnoi zadache dlya operatora vikhrya v klasse periodicheskikh funktsii”, Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki, Trudy seminara “Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki” pod rukovodstvom ak. RAN Ladyzhenskoi O. A. i prof. Saksa R. S. (Ufa, 2000), v. II, BGU, IMVTs UNTs RAN, Ufa, 2002, 175–194
[21] Ladyzhenskaya O. A., “O postroenii bazisov v prostranstvakh solenoidalnykh vektornykh polei”, Zapiski Nauch. seminarov POMI, 306, 2003, 92–106 | MR | Zbl
[22] Saks R. S., “Reshenie spektralnoi zadachi dlya operatora rotor i operatora Stoksa s periodicheskimi kraevymi usloviyami”, Zap. Nauch. seminarov POMI, 318, 2004, 246–276 | MR | Zbl
[23] Saks R. S., “Spektralnye zadachi dlya operatorov rotora i Stoksa”, Doklady Akad. Nauk, 416:4 (2007), 446–450 | MR | Zbl
[24] R. S. Saks, “The solution of spectral problems for curl and Stokes operators with periodic boundary conditions and some classes of explicit solutions of Navier–Stokes equations”, More progress in Analysis, Proc. V International ISAAC Congress (Italy, 2005), World Scientific, Berlin, 2009, 1195–1207 | DOI | MR
[25] Saks R. S., “Globalnye resheniya uravnenii Nave–Stoksa v ravnomerno vraschayuschemsya prostranstve”, Teoreticheskaya i matematicheskaya fizika, 162:2 (2010), 196–215 | DOI | MR | Zbl
[26] Saks R. S., “Yavnye globalnye resheniya uravnenii Nave–Stoksa i periodicheskie sobstvennye funktsii operatora rotor”, Doklady Akad. Nauk, 424:2 (2009), 171–176 | MR | Zbl
[27] Saks R. S., Khaibullin A. G., “Ob odnom metode chislennogo resheniya zadachi Koshi dlya uravnenii Nave–Stoksa i ryadakh Fure operatora rotor”, Doklady Akad. Nauk, 429:1 (2009), 22–27 | MR | Zbl
[28] Titov C. C., Reshenie uravnenii s osobennostyami v analiticheskikh shkalakh banakhovykh prostranstv, Izd. Ural. GAKhA, Ekaterinburg, 1999, 266 pp.
[29] Saks R. S., “O kraevykh zadachakh dlya sistemy $\operatorname{rot}u+\lambda u=h$”, Differentsialnye uravneniya, 8:1 (1972), 126–140 | MR
[30] Saks R. S., “Normalno razreshimye i neterovye kraevye zadachi dlya nekotorykh sistem uravneni matematichekoi fiziki”, Primenenie funktsionalnogo analiza k uravneniyam s chastnymi proizvodnymi, Trudy seminara akademika Soboleva S. L., 2, IM SOAN SSSR, Novosibirsk, 1983, 129–158 | MR
[31] Saks R. S., “Neterovo razreshimye kraevye zadachi dlya sistemy uravneni Soboleva v sluchae ustanovivshikhsya protsessov”, Doklady AN SSSR, 279:4 (1984), 813–817 | MR
[32] Khaibullin A. G., Saks R. S., “O programme nakhozhdeniya koeffitsientov ryada Fure i primenenii pri issledovanii sistemy Nave–Stoksa”, Sb. trudov IX-go mezhdunarodnogo seminara-soveschaniya “Kubaturnye formuly i ikh prilozheniya”, IM VTs UNTs RAN, Ufa, 2007, 175–181