Cauchy problem for the Navier–Stokes equations, Fourier method
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 51-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for the 3D Navier–Stokes equations with periodical conditions on the spatial variables is investigated. The vector functions under consideration are decomposed in Fourier series with respect to eigenfunctions of the curl operator. The problem is reduced to the Cauchy problem for Galerkin systems of ordinary differential equations with a simple structure. The program of reconstruction for these systems and numerical solutions of the Cauchy problems are realized. Several model problems are solved. The results are represented in a graphic form which illustrates the flows of the liquid. The linear homogeneous Cauchy problem is investigated in Gilbert spaces. Operator of this problem realizes isomorphism of these spaces. For a general case, some families of exact global solutions of the nonlinear Cauchy problem are found. Moreover, two Gilbert spaces with limited sequences of Galerkin approximations are written out.
Keywords: Fourier series, eigenfunctions of the curl operator, Navier–Stokes equations, Cauchy problem, Galerkin systems
Mots-clés : global solutions, Gilbert spaces.
@article{UFA_2011_3_1_a5,
     author = {R. S. Saks},
     title = {Cauchy problem for the {Navier{\textendash}Stokes} equations, {Fourier} method},
     journal = {Ufa mathematical journal},
     pages = {51--77},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - Cauchy problem for the Navier–Stokes equations, Fourier method
JO  - Ufa mathematical journal
PY  - 2011
SP  - 51
EP  - 77
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/
LA  - en
ID  - UFA_2011_3_1_a5
ER  - 
%0 Journal Article
%A R. S. Saks
%T Cauchy problem for the Navier–Stokes equations, Fourier method
%J Ufa mathematical journal
%D 2011
%P 51-77
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/
%G en
%F UFA_2011_3_1_a5
R. S. Saks. Cauchy problem for the Navier–Stokes equations, Fourier method. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a5/

[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 810 pp. | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 335 pp. | Zbl

[3] Ilin V. A., Izbrannye trudy, v. 1, Makspress, M., 2008, 730 pp.

[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR

[5] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 590 pp. | MR | Zbl

[7] Temam R. I., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Fazis, M., 1997, 770 pp. | MR

[8] A. Babin, A. Mahalov, B. Nicolaenko, “Global regularity of 3D rotating Navier–Stokes equations for resonant domains”, Indiana Univ. Math. J., 48:3 (1999), 1133–1176 | MR | Zbl

[9] A. Fursikov, “Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier–Stokes equations”, Discrete and continuous dynamical systems series, 3:2 (2010), 269–289 | DOI | MR | Zbl

[10] Arnold V. I., Izbrannoe-60, Fazis, M., 1997, 770 pp. | MR

[11] O. I. Bogoyavlenskij, “Infinite families of exact periodic solutions to the Navier–Stokes equations”, Moscow Mathematical Journal, 3:2 (2003), 263–272 | MR | Zbl

[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986, 736 pp. | MR

[13] S. Chandrasekhar, P. S. Kendall, “On force-free magnetic fields”, Astrophys. Journal, 126 (1957), 457–460 | DOI | MR

[14] J. B. Taylor, “Relaxation of toroidal plasma and generation of reverse magnetic fields”, Phys. Rev. Letters, 33 (1974), 1139–1141 | DOI

[15] D. Montgomery, L. Turner, G. Vahala, “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids, 21:5 (1978), 757–764 | DOI | Zbl

[16] Kozlov V. V., Obschaya teoriya vikhrei, Izd. Dom “Udmurdskii universitet”, Izhevsk, 1998, 240 pp. | MR | Zbl

[17] Pukhnachev V. V., “Simmetrii v uravneniyakh Nave–Stoksa”, Uspekhi mekhaniki, 2006, no. 1, 6–76

[18] Makhalov A. S., Nikolaenko V. P., “Globalnaya razreshimost trekhmernykh uravnenii Nave–Stoksa s ravnomerno bolshoi nachalnoi zavikhrennostyu”, Uspekhi matematicheskikh nauk, 58:2 (2003), 79–110 | DOI | MR | Zbl

[19] Ladyzhenskaya O. A., “O razlichnykh uravneniyakh dlya vyazkikh neszhimaemykh zhidkostei i ikh issledovanii”, Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki, Trudy seminara “Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki” pod rukovodstvom ak. RAN Ladyzhenskoi O. A. i prof. Saksa R. S. (Ufa, 2000), v. II, BGU, IMVTs UNTs RAN, Ufa, 2002, 89–100

[20] Saks R. S., Polyakov Yu. N., “O spektralnoi zadache dlya operatora vikhrya v klasse periodicheskikh funktsii”, Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki, Trudy seminara “Metody funktsionalnogo analiza i teorii funktsii v razlichnykh zadachakh matematicheskoi fiziki” pod rukovodstvom ak. RAN Ladyzhenskoi O. A. i prof. Saksa R. S. (Ufa, 2000), v. II, BGU, IMVTs UNTs RAN, Ufa, 2002, 175–194

[21] Ladyzhenskaya O. A., “O postroenii bazisov v prostranstvakh solenoidalnykh vektornykh polei”, Zapiski Nauch. seminarov POMI, 306, 2003, 92–106 | MR | Zbl

[22] Saks R. S., “Reshenie spektralnoi zadachi dlya operatora rotor i operatora Stoksa s periodicheskimi kraevymi usloviyami”, Zap. Nauch. seminarov POMI, 318, 2004, 246–276 | MR | Zbl

[23] Saks R. S., “Spektralnye zadachi dlya operatorov rotora i Stoksa”, Doklady Akad. Nauk, 416:4 (2007), 446–450 | MR | Zbl

[24] R. S. Saks, “The solution of spectral problems for curl and Stokes operators with periodic boundary conditions and some classes of explicit solutions of Navier–Stokes equations”, More progress in Analysis, Proc. V International ISAAC Congress (Italy, 2005), World Scientific, Berlin, 2009, 1195–1207 | DOI | MR

[25] Saks R. S., “Globalnye resheniya uravnenii Nave–Stoksa v ravnomerno vraschayuschemsya prostranstve”, Teoreticheskaya i matematicheskaya fizika, 162:2 (2010), 196–215 | DOI | MR | Zbl

[26] Saks R. S., “Yavnye globalnye resheniya uravnenii Nave–Stoksa i periodicheskie sobstvennye funktsii operatora rotor”, Doklady Akad. Nauk, 424:2 (2009), 171–176 | MR | Zbl

[27] Saks R. S., Khaibullin A. G., “Ob odnom metode chislennogo resheniya zadachi Koshi dlya uravnenii Nave–Stoksa i ryadakh Fure operatora rotor”, Doklady Akad. Nauk, 429:1 (2009), 22–27 | MR | Zbl

[28] Titov C. C., Reshenie uravnenii s osobennostyami v analiticheskikh shkalakh banakhovykh prostranstv, Izd. Ural. GAKhA, Ekaterinburg, 1999, 266 pp.

[29] Saks R. S., “O kraevykh zadachakh dlya sistemy $\operatorname{rot}u+\lambda u=h$”, Differentsialnye uravneniya, 8:1 (1972), 126–140 | MR

[30] Saks R. S., “Normalno razreshimye i neterovye kraevye zadachi dlya nekotorykh sistem uravneni matematichekoi fiziki”, Primenenie funktsionalnogo analiza k uravneniyam s chastnymi proizvodnymi, Trudy seminara akademika Soboleva S. L., 2, IM SOAN SSSR, Novosibirsk, 1983, 129–158 | MR

[31] Saks R. S., “Neterovo razreshimye kraevye zadachi dlya sistemy uravneni Soboleva v sluchae ustanovivshikhsya protsessov”, Doklady AN SSSR, 279:4 (1984), 813–817 | MR

[32] Khaibullin A. G., Saks R. S., “O programme nakhozhdeniya koeffitsientov ryada Fure i primenenii pri issledovanii sistemy Nave–Stoksa”, Sb. trudov IX-go mezhdunarodnogo seminara-soveschaniya “Kubaturnye formuly i ikh prilozheniya”, IM VTs UNTs RAN, Ufa, 2007, 175–181