Riesz bases in weighted spaces
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 45-50
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with weighted Hilbert spaces with convex weights. Let $h$ be a convex function on a bounded interval $I$ of the real axis. We denote a space of locally integrable functions on $I$, such that $$ \|f\|:=\sqrt{\int _I|f(t)|^2e^{-2h(t)}\,dt}\infty $$ by $L_2(I,h)$. If $I=(-\pi;\pi)$, $h(t)\equiv1$, the space $L_2(I,h)$ coincides with the classical space $L_2(-\pi;\pi)$ and the Fourier trigonometric system is a Riesz basis in this space. As it has been shown by B. J. Levin, nonharmonic Riesz bases in $L_2(-\pi;\pi)$ can be constructed using a system of zeros of entire functions of sine type. In this paper we prove that if a Riesz basis of exponentials exists in the space $L_2(I,h)$, this space is isomorphic (as a normed space) to the classical space $L_2(I)$. Thus, the existence of Riesz bases of exponentials is the exclusive property of the classical space $L_2(-\pi;\pi)$.
Keywords: Riesz basis, weighted Hilbert spaces, reproducing kernel, functions оf sine type.
Mots-clés : Fourier–Laplace transform
@article{UFA_2011_3_1_a4,
     author = {A. A. Putintseva},
     title = {Riesz bases in weighted spaces},
     journal = {Ufa mathematical journal},
     pages = {45--50},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a4/}
}
TY  - JOUR
AU  - A. A. Putintseva
TI  - Riesz bases in weighted spaces
JO  - Ufa mathematical journal
PY  - 2011
SP  - 45
EP  - 50
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a4/
LA  - en
ID  - UFA_2011_3_1_a4
ER  - 
%0 Journal Article
%A A. A. Putintseva
%T Riesz bases in weighted spaces
%J Ufa mathematical journal
%D 2011
%P 45-50
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a4/
%G en
%F UFA_2011_3_1_a4
A. A. Putintseva. Riesz bases in weighted spaces. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 45-50. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a4/

[1] Nikolskii N. K., Pavlov B. S., Khruschev S. V., Bezuslovnye bazisy iz eksponent i vosproizvodyaschikh yader. I, Preprint, LOMI, 8–80

[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[3] N. Aronszajn, “Theory of reproducing kernels”, Transactions of the American Mathematical Society, 68:3 (1950), 337–404 | DOI | MR | Zbl

[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR

[5] Bashmakov R. A., Sistemy eksponent v vesovykh gilbertovkh prostranstvakh na $R$, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, Institut matematiki s VTs UNTs RAN, 2006

[6] Isaev K. P., Yulmukhametov R. S., “O bezuslovnykh bazisakh iz eksponent v gilbertovykh prostranstvakh”, UMZh, 3:1 (2011), 3–15 | MR | Zbl

[7] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli–Vinera na vesovye prostranstva”, Matem. zametki, 48:5 (1990), 80–87 | MR | Zbl

[8] Lutsenko V. I., “Teorema Peli–Vinera na neogranichennom intervale”, Issledovaniya po teorii priblizhenii, Ufa, 1989, 79–85 | MR | Zbl

[9] Napalkov V. V., Bashmakov R. A., Yulmukhametov R. S., “Asimptoticheskoe povedenie integralov Laplasa i geometricheskie kharakteristiki vypuklykh funktsii”, Doklady Akademii nauk, 413:1 (2007), 20–22 | MR | Zbl

[10] Bari N. K., “O bazisakh v gilbertovom prostranstve”, Doklady Akademii nauk, 54:5 (1946), 383–386

[11] Levin B. Ya., “O bazisakh pokazatelnykh funktsii v $L^2$”, Zap. matem. otd. fiz.-mat. fak-ta KhGU i KhMO. Ser. 4, 27 (1961), 39–48

[12] Levin B. Ya., “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa”, Matem. fizika i funkts. analiz (FTINT AN USSR), 1969, no. 1, 136–146 | MR

[13] Golovin V. D., “O biortogonalnykh razlozheniyakh v $L^2$ po lineinym kombinatsiyam pokazatelnykh funktsii”, Zap. matem. otd. fiz.-mat. fak-ta KhGU i KhMO. Ser. 4, 30 (1964), 18–29 | MR