@article{UFA_2011_3_1_a3,
author = {D. K. Potapov},
title = {Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators},
journal = {Ufa mathematical journal},
pages = {42--44},
year = {2011},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a3/}
}
D. K. Potapov. Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 42-44. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a3/
[1] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. mat. zhurn., 42:4 (2001), 911–919 | MR | Zbl
[2] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta. Ser. 10, 2004, no. 4, 125–132
[3] Goldshtik M. A., “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313
[4] L. E. Fraenkel, M. S. Berger, “A global theory of steady vortex rings in an ideal fluid”, Acta Math., 132:1 (1974), 13–51 | DOI | MR | Zbl
[5] H. J. Kuiper, “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo Ser. 2, 20:2–3 (1971), 113–138 | DOI | MR
[6] Potapov D. K., “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | MR | Zbl
[7] Potapov D. K., “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl
[8] Potapov D. K., “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | MR | Zbl
[9] Potapov D. K., Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, Izd-vo IBP, SPb., 2008, 99 pp.
[10] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl