Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 42-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the existence of solutions of the eigenvalue problem for nonlinear equations with discontinuous operators in the reflexive Banach space. Coercivity of the corresponding mapping is not supposed. An upper bound for the value of the bifurcation parameter is obtained by the variational method. This result confirms that the upper bound for the value of the bifurcation parameter obtained earlier in spectral problems for elliptic equations with discontinuous nonlinearities is true.
Keywords:
eigenvalues, spectral problems, discontinuous operator, variational method, upper bound, bifurcation parameter.
@article{UFA_2011_3_1_a3,
author = {D. K. Potapov},
title = {Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators},
journal = {Ufa mathematical journal},
pages = {42--44},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a3/}
}
TY - JOUR AU - D. K. Potapov TI - Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators JO - Ufa mathematical journal PY - 2011 SP - 42 EP - 44 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a3/ LA - en ID - UFA_2011_3_1_a3 ER -
D. K. Potapov. Estimation of the bifurcation parameter in spectral problems for equations with discontinuous operators. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 42-44. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a3/