On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 30-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an orthosimilar system with the measure $\mu$ in the space of analytical functions $H$ on the domain $G\subset\mathbb C$. Let $K_H(\xi,t)$, $\xi,t\in G$, be a reproduction kernel in the space $H$. We claim that a system $\{K_H(\xi,t)\}_{t\in G}$ is the orthosimilar system with the measure $\mu$ in the space $H$ if and only if the space $H$ coincides with the space $B_2(G,\mu)$. A problem of describing the dual space in terms of the Hilbert transform is considered. This problem is reduced to the problem of existence of a special orthosimilar system in $B_2(G,\mu)$. We prove that the space $\widetilde B_2(G,\mu)$ is the only space with a reproduction kernel and it consists of functions given on the domain $\mathbb C\setminus\overline G$ with an orthosimilar system $\{\frac1{(z-\xi)^2}\}_{\xi\in G}$ with the measure $\mu$.
Keywords: Bergman space, Hilbert spaces, reproducing kernel, orthosimilar system
Mots-clés : Hilbert transform.
@article{UFA_2011_3_1_a2,
     author = {V. V. Napalkov (Jr.)},
     title = {On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space},
     journal = {Ufa mathematical journal},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/}
}
TY  - JOUR
AU  - V. V. Napalkov (Jr.)
TI  - On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space
JO  - Ufa mathematical journal
PY  - 2011
SP  - 30
EP  - 41
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/
LA  - en
ID  - UFA_2011_3_1_a2
ER  - 
%0 Journal Article
%A V. V. Napalkov (Jr.)
%T On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space
%J Ufa mathematical journal
%D 2011
%P 30-41
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/
%G en
%F UFA_2011_3_1_a2
V. V. Napalkov (Jr.). On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 30-41. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/