On orthosimilar systems in a space of analytical functions and the problem of describing the dual space
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 30-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an orthosimilar system with the measure $\mu$ in the space of analytical functions $H$ on the domain $G\subset\mathbb C$. Let $K_H(\xi,t)$, $\xi,t\in G$, be a reproduction kernel in the space $H$. We claim that a system $\{K_H(\xi,t)\}_{t\in G}$ is the orthosimilar system with the measure $\mu$ in the space $H$ if and only if the space $H$ coincides with the space $B_2(G,\mu)$. A problem of describing the dual space in terms of the Hilbert transform is considered. This problem is reduced to the problem of existence of a special orthosimilar system in $B_2(G,\mu)$. We prove that the space $\widetilde B_2(G,\mu)$ is the only space with a reproduction kernel and it consists of functions given on the domain $\mathbb C\setminus\overline G$ with an orthosimilar system $\{\frac1{(z-\xi)^2}\}_{\xi\in G}$ with the measure $\mu$.
Keywords: Bergman space, Hilbert spaces, reproducing kernel, orthosimilar system
Mots-clés : Hilbert transform.
@article{UFA_2011_3_1_a2,
     author = {V. V. Napalkov (Jr.)},
     title = {On orthosimilar systems in a~space of analytical functions and the problem of describing the dual space},
     journal = {Ufa mathematical journal},
     pages = {30--41},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/}
}
TY  - JOUR
AU  - V. V. Napalkov (Jr.)
TI  - On orthosimilar systems in a space of analytical functions and the problem of describing the dual space
JO  - Ufa mathematical journal
PY  - 2011
SP  - 30
EP  - 41
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/
LA  - en
ID  - UFA_2011_3_1_a2
ER  - 
%0 Journal Article
%A V. V. Napalkov (Jr.)
%T On orthosimilar systems in a space of analytical functions and the problem of describing the dual space
%J Ufa mathematical journal
%D 2011
%P 30-41
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/
%G en
%F UFA_2011_3_1_a2
V. V. Napalkov (Jr.). On orthosimilar systems in a space of analytical functions and the problem of describing the dual space. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 30-41. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a2/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, 544 pp. | MR | Zbl

[2] Kantorovich L. V., Akilov A. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[3] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191 (1953), 30–49 | DOI | MR | Zbl

[4] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl

[5] Lyubarskii Yu. I., “Ryady eksponent v prostranstvakh Smirnova i interpolyatsiya tselymi funktsiyami spetsialnykh klassov”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 559–580 | MR | Zbl

[6] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Vinera–Peli na funktsionaly v prostranstvakh Smirnova”, Trudy MIAN, 200, Nauka, M., 1991, 245–254 | MR | Zbl

[7] Napalkov V. V. (ml.), Yulmukhametov R. S., “O preobrazovanii Gilberta v prostranstve Bergmana”, Matemat. zametki, 70:1 (2001), 68–78 | DOI | MR | Zbl

[8] Napalkov V. V. (ml.), “Razlichnye predstavleniya prostranstva analiticheskikh funktsii i zadacha opisaniya sopryazhennogo prostranstva”, Doklady RAN, 387:2 (2002), 164–167 | MR | Zbl

[9] Isaev K. P., Yulmukhametov R. S., “Preobrazovaniya Laplasa funktsionalov na prostranstvakh Bergmana”, Izv. RAN. Ser. matem., 68:1 (2004), 5–42 | DOI | MR | Zbl

[10] Lukashenko T. P., “O svoistvakh sistem razlozheniya podobnykh ortogonalnym”, Izv. RAN. Ser. matem., 62:5 (1998), 187–206 | DOI | MR | Zbl

[11] A. Grossmann, J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape”, SIAM J. Math. Anal., 15 (1984), 723–736 | DOI | MR | Zbl

[12] N. Aronszajn, “Theory of reproducing kernels”, Transactions of the AMS, 68:3 (1950), 337–404 | DOI | MR | Zbl

[13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer-Verlag, New York, 2000, 289 pp. | MR | Zbl

[14] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 588 pp. | MR

[15] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.

[16] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986, 216 pp. | MR | Zbl