An analogue of the Paley–Wiener theorem and its applications to optimal recovery of entire functions
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 16-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $W^p$ be the Wiener class of entire functions of exponential type in $\mathbb C^n$ belonging to $L^p(\mathbb R^n),$ where $1$. Full analogues of the Paley–Wiener theorem for the class $W^p$ and, in a multidimensional case, for the Plancherel–Pólya theorem on structure of the Fourier transform for any entire function $f\in W^2$, are obtained in a fundamentally new form in terms of the language of distributions. The results are applied to the problem of the best analytic continuation from a finite set of functions of the Wiener class. Of special interest is the description of the existence conditions for constructive algebraic formulae of characteristics for the optimal recovery of linear functionals.
Keywords: Wiener class of entire functions, optimal linear algorithm, Chebyshev polynomial.
Mots-clés : Fourier transform, distributions
@article{UFA_2011_3_1_a1,
     author = {L. S. Maergoiz and N. N. Tarkhanov},
     title = {An analogue of the {Paley{\textendash}Wiener} theorem and its applications to optimal recovery of entire functions},
     journal = {Ufa mathematical journal},
     pages = {16--29},
     year = {2011},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/}
}
TY  - JOUR
AU  - L. S. Maergoiz
AU  - N. N. Tarkhanov
TI  - An analogue of the Paley–Wiener theorem and its applications to optimal recovery of entire functions
JO  - Ufa mathematical journal
PY  - 2011
SP  - 16
EP  - 29
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/
LA  - en
ID  - UFA_2011_3_1_a1
ER  - 
%0 Journal Article
%A L. S. Maergoiz
%A N. N. Tarkhanov
%T An analogue of the Paley–Wiener theorem and its applications to optimal recovery of entire functions
%J Ufa mathematical journal
%D 2011
%P 16-29
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/
%G en
%F UFA_2011_3_1_a1
L. S. Maergoiz; N. N. Tarkhanov. An analogue of the Paley–Wiener theorem and its applications to optimal recovery of entire functions. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/

[1] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964, 268 pp. | MR

[2] M. Plancherel, G. Pólya, “Fonctions entiéres et intégrales de Fourier multiples I”, Commentarii mathematici Helvetici, 9 (1937), 224–248 | DOI | Zbl

[3] L. S. Maergoiz, “An Analogue of the Paley-Wiener Theorem for Entire Functions of Class $W^p_\sigma$, $1

2$ and Some Applications”, Computational Methods and Function Theory, 6:2 (2006), 459–469 | DOI | MR | Zbl

[4] Maergoiz L. S., “Optimalnaya oshibka ekstrapolyatsii s konechnogo mnozhestva v klasse Vinera”, Sib. mat. zhurn., 41:6 (2000), 1363–1375 | MR | Zbl

[5] L. Maergoiz, N. Tarkhanov, Recovery from a Finite Set in Banach Spaces of Entire Functions, Preprint 2006/19 ISSN 1437-739X, Institut für Mathematik Univ. Potsdam, 2006, 16 pp.

[6] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986, 464 pp. | MR

[7] Zigmund A., Trigonometricheskie ryady, v. I, Mir, M., 1965, 616 pp. | MR

[8] M. Plancherel, G. Pólya, “Fonctions entiéres et intégrales de Fourier multiples, II”, Commentarii mathematici Helvetici, 10 (1938), 110–163 | DOI | MR | Zbl

[9] B. Ya. Levin, Lectures on Entire Functions, Translation of mathematical monographs, 150, AMS, Providence, R.I., 1996, 248 pp. | MR | Zbl

[10] Abanin A. V., Nalbandyan Yu. S., Shabarshina I. S., “Prodolzhenie beskonechno differentsiruemykh funktsii do tselykh funktsii s zadannymi otsenkami rosta i teoremy tipa Peli–Vinera–Shvartsa”, Vladikavkazskii mat. zhurn., 6:2 (2004), 3–9 | MR | Zbl

[11] Privalov A. A., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950, 336 pp.

[12] C. A. Micchelli, T. J. Rivlin, “Lectures on optimal recovery”, Lect. Notes Math., 1129, 1985, 21–93 | DOI | MR

[13] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: Theory and Applications, Translations of Mathematical Monographs, 222, AMS, Providence, R.I., 2003, 184 pp. | MR

[14] K. Yu. Osipenko, Optimal Recovery of Analytic Functions, Nova Science Publishers Inc., Huntington, New York, 2000, 185 pp.

[15] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 408 pp. | MR | Zbl

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[17] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, 1364, Springer-Verlag, New York–Berlin, 1988, 121 pp. | MR

[18] Dei M. M., Normirovannye lineinye prostranstva, IL., M., 1961, 235 pp.

[19] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR