An analogue of the Paley--Wiener theorem and its applications to optimal recovery of entire functions
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 16-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W^p$ be the Wiener class of entire functions of exponential type in $\mathbb C^n$ belonging to $L^p(\mathbb R^n),$ where $1$. Full analogues of the Paley–Wiener theorem for the class $W^p$ and, in a multidimensional case, for the Plancherel–Pólya theorem on structure of the Fourier transform for any entire function $f\in W^2$, are obtained in a fundamentally new form in terms of the language of distributions. The results are applied to the problem of the best analytic continuation from a finite set of functions of the Wiener class. Of special interest is the description of the existence conditions for constructive algebraic formulae of characteristics for the optimal recovery of linear functionals.
Keywords: Wiener class of entire functions, optimal linear algorithm, Chebyshev polynomial.
Mots-clés : Fourier transform, distributions
@article{UFA_2011_3_1_a1,
     author = {L. S. Maergoiz and N. N. Tarkhanov},
     title = {An analogue of the {Paley--Wiener} theorem and its applications to optimal recovery of entire functions},
     journal = {Ufa mathematical journal},
     pages = {16--29},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/}
}
TY  - JOUR
AU  - L. S. Maergoiz
AU  - N. N. Tarkhanov
TI  - An analogue of the Paley--Wiener theorem and its applications to optimal recovery of entire functions
JO  - Ufa mathematical journal
PY  - 2011
SP  - 16
EP  - 29
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/
LA  - en
ID  - UFA_2011_3_1_a1
ER  - 
%0 Journal Article
%A L. S. Maergoiz
%A N. N. Tarkhanov
%T An analogue of the Paley--Wiener theorem and its applications to optimal recovery of entire functions
%J Ufa mathematical journal
%D 2011
%P 16-29
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/
%G en
%F UFA_2011_3_1_a1
L. S. Maergoiz; N. N. Tarkhanov. An analogue of the Paley--Wiener theorem and its applications to optimal recovery of entire functions. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a1/