High excursion probabilities for gaussian fields won smooth manifolds
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 369-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gaussian random fields on finite-dimensional smooth manifolds, whose variance functions reach their maximum values at smooth submanifolds, are considered, and the exact asymptotic behavior of large excursion probabilities is established. It is shown that our conditions on the behavior of the covariation and variance are best possible in the context of the classical Pickands double sum method. Applications of our asymptotic formulas to large deviations of Gaussian vector processes are considered, and some examples are given. This paper continues the previous study of the author with Kobelkov, Rodionov, and Hashorva [J. Math. Sci., 262 (2022), pp. 504–513] which was concerned with Gaussian processes and fields on manifolds with a single point of maximum of the variance.
Keywords: nonstationary random field, Gaussian vector process, Gaussian field, Pickands method, double sum method.
Mots-clés : large excursion
@article{TVP_2024_69_2_a9,
     author = {V. I. Piterbarg},
     title = {High excursion probabilities for gaussian fields won smooth manifolds},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--392},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a9/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - High excursion probabilities for gaussian fields won smooth manifolds
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 369
EP  - 392
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a9/
LA  - ru
ID  - TVP_2024_69_2_a9
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T High excursion probabilities for gaussian fields won smooth manifolds
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 369-392
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a9/
%G ru
%F TVP_2024_69_2_a9
V. I. Piterbarg. High excursion probabilities for gaussian fields won smooth manifolds. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 369-392. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a9/

[1] V. A. Zorich, Mathematical analysis, v. II, Universitext, 2nd ed., Springer, Heidelberg, 2016, xx+720 pp. | DOI | MR | Zbl

[2] S. G. Kobelkov, V. I. Piterbarg, I. V. Rodionov, E. Hashorva, “On the maximum of a Gaussian process with unique maximum point of its variance”, J. Math. Sci. (N.Y.), 262:4 (2022), 504–513 | DOI | MR | Zbl

[3] T. L. Mikhaleva, V. I. Piterbarg, “On the distribution of the maximum of a Gaussian field with constant variance on a smooth manifold”, Theory Probab. Appl., 41:2 (1997), 367–379 | DOI | DOI | MR | Zbl

[4] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl

[5] V. I. Piterbarg, V. P. Prisyazhnyuk, “Asymptotics of the probability of large excursions for a nonstationary Gaussian process”, Theory Probab. Math. Statist., 18 (1979), 131–144 | MR | Zbl

[6] J. Hüsler, “Extreme values and high boundary crossings of locally stationary Gaussian processes”, Ann. Probab., 18:3 (1990), 1141–1158 | DOI | MR | Zbl

[7] S. G. Kobelkov, V. I. Piterbarg, “On maximum of Gaussian random field having unique maximum point of its variance”, Extremes, 22:3 (2019), 413–432 | DOI | MR | Zbl

[8] S. G. Kobelkov, V. I. Piterbarg, I. V. Rodionov, “Correction to: On maximum of Gaussian random fields having unique maximum point of its variance”, Extremes, 24:1 (2021), 85–90 | DOI | MR | Zbl

[9] Peng Liu, Extremes of Gaussian random fields with maximum variance attained over smooth curves, 2016, 26 pp., arXiv: 1612.07780

[10] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, Reprint of the 1996 ed., Amer. Math. Soc., Providence, RI, 2012, xii+206 pp. | DOI | MR | Zbl | Zbl

[11] V. I. Piterbarg, “High excursions for nonstationary generalized chi-square processes”, Stochastic Process. Appl., 53:2 (1994), 307–337 | DOI | MR | Zbl

[12] V. I. Piterbarg, I. V. Rodionov, “High excursions of Bessel and related random processes”, Stochastic Process. Appl., 130:8 (2020), 4859–4872 | DOI | MR | Zbl

[13] Wanli Qiao, Extremes of locally stationary Gaussian and chi fields on manifolds, 2020, 27 pp., arXiv: 2005.07185

[14] M. Talagrand, “Small tails for the supremum of a Gaussian process”, Ann. Inst. H. Poincaré Probab. Statist., 24:2 (1988), 307–315 | MR | Zbl