Poisson process with linear drift and related function series
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 354-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the random process $Y(t)=at-\nu_+(pt)+\nu_-(-qt)$, $t\in(-\infty,\infty)$, where $\nu_{\pm}(t)$ are independent standard Poisson processes for $t\geqslant 0$ and $\nu_{\pm}(t)=0$ for $t<0$. The parameters $a$, $p$, and $q$ are such that $\mathbf{E}Y(t)<0$, $t\neq0$. We evaluate the sums $\varphi_m(z,r)=\sum_{k\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$, $m=1,2,\dots$, $z\geq0$, of function series with parameter $ r\in(0,1) $. These series are used for recursive evaluation of the moments $\mathbf{E}(t^*)^m$, $m\geq 1$, for the time $t^*$ when the trajectory of the process $Y(t)$ attains its maximum value. The results obtained are applied to the problem of estimating the parameter $\theta$ from $n$ observations with density $f(x,\theta)$, which has a jump at the point $x=x(\theta)$, $x'(\theta)\neq 0$. If $\widehat\theta_n$ is a maximum likelihood estimator for the true parameter $\theta_0$, then the limit distribution as $n\to\infty$ for the normalized estimators $n(\widehat\theta_n-\theta_0)$ is the distribution of the argument of the maximum $t^*_{\theta_0}$ of the trajectory of the process $Y(t)$ with parameters $a$, $p$, and $q$, which depend on both the one-sided limits of the density at the point $x(\theta_0)$ and the derivative $x'(\theta_0)$. In this case, by evaluating the moments $\mathbf{E}(t^*_{\theta_0})^m$, $m=1, 2$, one can estimate both the asymptotic bias for the maximum likelihood estimator and its efficiency.
Keywords: Poisson process with linear drift, sum of functional parametric series, statistic estimation of a jump point of distribution density.
@article{TVP_2024_69_2_a8,
     author = {V. E. Mosyagin},
     title = {Poisson process with linear drift and related function series},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {354--368},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a8/}
}
TY  - JOUR
AU  - V. E. Mosyagin
TI  - Poisson process with linear drift and related function series
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 354
EP  - 368
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a8/
LA  - ru
ID  - TVP_2024_69_2_a8
ER  - 
%0 Journal Article
%A V. E. Mosyagin
%T Poisson process with linear drift and related function series
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 354-368
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a8/
%G ru
%F TVP_2024_69_2_a8
V. E. Mosyagin. Poisson process with linear drift and related function series. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 354-368. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a8/

[1] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl

[2] I. A. Ibragimov, R. Z. Has'minskii, Statistical estimation. Asymptotic theory, Appl. Math., 16, Springer-Verlag, New York–Berlin, 1981, vii+403 pp. | DOI | MR | MR | Zbl | Zbl

[3] V. E. Mosyagin, “Asymptotics for the distribution of the time of attaining the maximum for a trajectory of a Poisson process with linear drift and intensity switch”, Theory Probab. Appl., 66:1 (2021), 75–88 | DOI | DOI | MR | Zbl

[4] V. E. Mosyagin, N. A. Shvemler, “Raspredelenie momenta maksimuma raznosti dvukh puassonovskikh protsessov s otritsatelnym lineinym snosom”, Sib. elektron. matem. izv., 13 (2016), 1229–1248 | DOI | MR | Zbl

[5] V. E. Mosyagin, N. A. Shvemler, “Lokalnye svoistva predelnogo raspredeleniya statisticheskoi otsenki tochki razryva plotnosti”, Sib. elektron. matem. izv., 14 (2017), 1307–1316 | DOI | MR | Zbl

[6] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 1, Elementary functions, Gordon Breach Science Publishers, New York, 1986, 798 pp. | MR | MR | Zbl | Zbl