One remark to the Itô formula
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 285-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical Itô formula, we propose replacing the second derivative (understood in the usual sense) by the second derivative in the sense of differentiation of distributions. In particular, we show that this can be done if the first derivative lies in the class $L_{2,\mathrm{loc}}(\mathbf{R})$. Earlier, Föllmer, Protter, and Shiryayev [Bernoulli, 1 (1995), pp. 149–169] obtained a different form of the last term in the Itô formula under the same conditions.
Keywords: random process, local time
Mots-clés : Itô formula, distribution.
@article{TVP_2024_69_2_a5,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {One remark to the {It\^o} formula},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {285--304},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - One remark to the Itô formula
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 285
EP  - 304
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/
LA  - ru
ID  - TVP_2024_69_2_a5
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T One remark to the Itô formula
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 285-304
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/
%G ru
%F TVP_2024_69_2_a5
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. One remark to the Itô formula. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 285-304. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/

[1] A. N. Borodin, I. A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195 (1995), 1–259 | MR | Zbl

[2] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964, xviii+423 pp. | MR | MR | Zbl | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “O nekotorykh svoistvakh drobnoi proizvodnoi brounovskogo lokalnogo vremeni”, Trudy MIAN (to appear)

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Approximation of a Wiener process local time by functionals of random walks”, Theory Probab. Appl., 66:1 (2021), 58–74 | DOI | DOI | MR | Zbl

[5] G. V. Perelman, “Towards the validity of Itô's formula for discontinuous functions”, Theory Probab. Appl., 56:3 (2011), 443–456 | DOI | DOI | MR | Zbl

[6] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl

[7] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl

[8] Ph. Biane, M. Yor, “Valeurs principales associées aux temps locaux browniens”, Bull. Sci. Math. (2), 111:1 (1987), 23–101 | MR | Zbl

[9] N. Bouleau, M. Yor, “Sur la variation quadratique des temps locaux de certaines semimartingales”, C. R. Acad. Sci. Paris Sér. I Math., 292:9 (1981), 491–494 | MR | Zbl

[10] A. S. Cherny, “Principal values of the integral functionals of Brownian motion: existence, continuity and an extension of Itô's formula”, Séminaire de probabilités XXXV, Lecture Notes in Math., 1755, Springer-Verlag, Berlin, 2001, 348–370 | DOI | MR | Zbl

[11] H. Föllmer, Ph. Protter, A. N. Shiryayev, “Quadratic covariation and an extension of Itô's formula”, Bernoulli, 1:1-2 (1995), 149–169 | DOI | MR | Zbl

[12] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 2nd ed., Springer-Verlag, Berlin, 1994, xii+560 pp. | MR | Zbl