Mots-clés : Itô formula, distribution.
@article{TVP_2024_69_2_a5,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {One remark to the {It\^o} formula},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {285--304},
year = {2024},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/}
}
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. One remark to the Itô formula. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 285-304. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a5/
[1] A. N. Borodin, I. A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195 (1995), 1–259 | MR | Zbl
[2] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964, xviii+423 pp. | MR | MR | Zbl | Zbl
[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “O nekotorykh svoistvakh drobnoi proizvodnoi brounovskogo lokalnogo vremeni”, Trudy MIAN (to appear)
[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Approximation of a Wiener process local time by functionals of random walks”, Theory Probab. Appl., 66:1 (2021), 58–74 | DOI | DOI | MR | Zbl
[5] G. V. Perelman, “Towards the validity of Itô's formula for discontinuous functions”, Theory Probab. Appl., 56:3 (2011), 443–456 | DOI | DOI | MR | Zbl
[6] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl
[7] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl
[8] Ph. Biane, M. Yor, “Valeurs principales associées aux temps locaux browniens”, Bull. Sci. Math. (2), 111:1 (1987), 23–101 | MR | Zbl
[9] N. Bouleau, M. Yor, “Sur la variation quadratique des temps locaux de certaines semimartingales”, C. R. Acad. Sci. Paris Sér. I Math., 292:9 (1981), 491–494 | MR | Zbl
[10] A. S. Cherny, “Principal values of the integral functionals of Brownian motion: existence, continuity and an extension of Itô's formula”, Séminaire de probabilités XXXV, Lecture Notes in Math., 1755, Springer-Verlag, Berlin, 2001, 348–370 | DOI | MR | Zbl
[11] H. Föllmer, Ph. Protter, A. N. Shiryayev, “Quadratic covariation and an extension of Itô's formula”, Bernoulli, 1:1-2 (1995), 149–169 | DOI | MR | Zbl
[12] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 2nd ed., Springer-Verlag, Berlin, 1994, xii+560 pp. | MR | Zbl