On the proximity of distributions of successive sums in the Prokhorov distance
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 272-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\sqrt{n}$. Then $(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\varepsilon}$ denotes the $\varepsilon$-neighborhood of a set $A$).
Keywords: sum of independent random vectors, proximity of successive convolutions, convex set, the Prokhorov distance, inequality.
@article{TVP_2024_69_2_a4,
     author = {A. Yu. Zaitsev},
     title = {On the proximity of distributions of successive sums in the {Prokhorov} distance},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {272--284},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - On the proximity of distributions of successive sums in the Prokhorov distance
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 272
EP  - 284
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a4/
LA  - ru
ID  - TVP_2024_69_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T On the proximity of distributions of successive sums in the Prokhorov distance
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 272-284
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a4/
%G ru
%F TVP_2024_69_2_a4
A. Yu. Zaitsev. On the proximity of distributions of successive sums in the Prokhorov distance. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 272-284. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a4/

[1] T. V. Arak, A. Yu. Zaĭtsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | MR | Zbl

[2] A. Araujo, E. Giné, The central limit theorem for real and Banach valued random variables, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1980, xiv+233 pp. | MR | Zbl

[3] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1976, xiv+274 pp. | MR | MR | Zbl | Zbl

[4] R. M. Dudley, “Distances of probability measures and random variables”, Ann. Math. Statist., 39:5 (1968), 1563–1572 | DOI | MR | Zbl

[5] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[6] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563 | DOI | MR | Zbl

[7] F. Götze, A. Yu. Zaitsev, “Estimates for closeness of convolutions of probability distributions on convex polyhedra”, J. Math. Sci. (N.Y.), 251:1 (2020), 67–73 | DOI | MR | Zbl

[8] F. Götze, A. Yu. Zaitsev, “Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra”, J. Math. Sci. (N.Y.), 273:5 (2023), 732–737 | DOI | MR | Zbl

[9] I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Theory Probab. Appl., 18:4 (1974), 713–727 | DOI | MR | Zbl

[10] A. N. Kolmogorov, “Two uniform limit theorems for sums of independent random variables”, Theory Probab. Appl., 1:4 (1956), 384–394 | DOI | MR | Zbl

[11] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli 1713, Bayes 1763, Laplace 1813, Anniversary volume (Statist. Lab., Univ. California, Berkeley, CA, 1963), Springer-Verlag, New York, 1965, 179–202 | DOI | MR | Zbl

[12] M. Panov, V. Spokoiny, “Finite sample Bernstein–von Mises theorem for semiparametric problems”, Bayesian Anal., 10:3 (2015), 665–710 | DOI | MR | Zbl

[13] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[14] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[15] V. V. Sazonov, “On the multi-dimensional central limit theorem”, Sankhyā Ser. A, 30 (1968), 181–204 | MR | Zbl

[16] V. V. Sazonov, Normal approximation — some recent advances, Lecture Notes in Math., 879, Springer-Verlag, Berlin–New York, 1981, vii+105 pp. | DOI | MR | Zbl

[17] G. Schay, “Nearest random variables with given distributions”, Ann. Probab., 2 (1974), 163–166 | DOI | MR | Zbl

[18] V. Spokoiny, M. Zhilova, “Bootstrap confidence sets under model misspecification”, Ann. Statist., 43:6 (2015), 2653–2675 | DOI | MR | Zbl

[19] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36:2 (1965), 423–439 | DOI | MR | Zbl

[20] V. V. Jurinskii, “A smoothing inequality for estimates of the Lévy–Prokhorov distance”, Theory Probab. Appl., 20:1 (1975), 1–10 | DOI | MR | Zbl

[21] A. Yu. Zaitsev, “Estimation of proximity of distributions of sequential sums of independent identically distributed random vectors”, J. Soviet Math., 24:5 (1984), 536–539 | DOI | MR | Zbl

[22] A. Yu. Zaitsev, “Some properties of $n$-fold convolutions of distributions”, Theory Probab. Appl., 26:1 (1981), 148–152 | DOI | MR | Zbl

[23] A. Yu. Zaitsev, “Some estimates for the distributions of sums of independent random variables and vectors”, In: “Summary of papers presented at sessions of the probability and statistics seminar at the Leningrad section of the Mathematical Institute of the USSR Academy of Sciences, 1979”, Theory Probab. Appl., 26:1 (1981), 188 | DOI

[24] A. Yu. Zaitsev, “Estimates of closeness of successive convolutions of symmetric distributions”, In: “Summary of reports presented at sessions of the probability and mathematical statistics seminar at the Leningrad section of the Mathematical Institute of the USSR Academy of Sciences, 1981”, Theory Probab. Appl., 28:1 (1984), 194–195 | DOI

[25] A. Yu. Zaĭtsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Relat. Fields, 79:2 (1988), 175–200 | DOI | MR | Zbl

[26] A. Yu. Zaitsev, “Otsenki ustoichivosti po kolichestvu slagaemykh dlya raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh vektorov”, Veroyatnost i statistika. 34, Posvyaschaetsya yubileyu Andreya Nikolaevicha Borodina, Zap. nauch. sem. POMI, 525, POMI, SPb., 2023, 86–95

[27] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR | Zbl