Optimal growth strategies in a stochastic market model with endogenous prices
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 256-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a stochastic multiagent market model with endogenous asset prices and find a market strategy which cannot be asymptotically outperformed by a single agent. Such a strategy should distribute its capital among the assets proportionally to the conditional expectations of their discounted relative dividend intensities. The main assumption, under which the results are obtained, is that all agents should be small in the sense that actions of an individual agent do not affect the asset prices. The optimal strategy is found as a solution of a linear backward stochastic differential equation.
Keywords: optimal growth strategies, backward stochastic differential equations.
Mots-clés : martingales
@article{TVP_2024_69_2_a3,
     author = {M. V. Zhitlukhin},
     title = {Optimal growth strategies in a stochastic market model with endogenous prices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {256--271},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/}
}
TY  - JOUR
AU  - M. V. Zhitlukhin
TI  - Optimal growth strategies in a stochastic market model with endogenous prices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 256
EP  - 271
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/
LA  - ru
ID  - TVP_2024_69_2_a3
ER  - 
%0 Journal Article
%A M. V. Zhitlukhin
%T Optimal growth strategies in a stochastic market model with endogenous prices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 256-271
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/
%G ru
%F TVP_2024_69_2_a3
M. V. Zhitlukhin. Optimal growth strategies in a stochastic market model with endogenous prices. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 256-271. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/

[1] P. H. Algoet, T. M. Cover, “Asymptotic optimality and asymptotic equipartition properties of log-optimum investment”, Ann. Probab., 16:2 (1988), 876–898 | DOI | MR | Zbl

[2] R. Amir, I. V. Evstigneev, T. Hens, Le Xu, “Evolutionary finance and dynamic games”, Math. Financ. Econ., 5:3 (2011), 161–184 | DOI | MR | Zbl

[3] R. Amir, I. V. Evstigneev, T. Hens, V. Potapova, K. R. Schenk-Hoppé, “Evolution in pecunia”, Proc. Natl. Acad. Sci. USA, 118:26 (2021), e2016514118, 8 pp. | DOI

[4] L. Blume, D. Easley, “If you're so smart, why aren't you rich? Belief selection in complete and incomplete markets”, Econometrica, 74:4 (2006), 929–966 | DOI | MR | Zbl

[5] J. Borovička, “Survival and long-run dynamics with heterogeneous beliefs under recursive preferences”, J. Polit. Econ., 128:1 (2020), 206–251 | DOI

[6] L. Breiman, “Optimal gambling systems for favorable games”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, v. 1, Univ. of California Press, Berkeley–Los Angeles, CA, 1961, 65–78 | MR | Zbl

[7] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl

[8] Y. Drokin, M. Zhitlukhin, “Relative growth optimal strategies in an asset market game”, Ann. Finance, 16:4 (2020), 529–546 | DOI | MR | Zbl

[9] I. Evstigneev, T. Hens, V. Potapova, K. R. Schenk-Hoppé, “Behavioral equilibrium and evolutionary dynamics in asset markets”, J. Math. Econom., 91 (2020), 121–135 | DOI | MR | Zbl

[10] I. V. Evstigneev, T. Hens, K. R. Schenk-Hoppé, “Evolutionary stable stock markets”, Econom. Theory, 27:2 (2006), 449–468 | DOI | MR | Zbl

[11] I. V. Evstigneev, T. Hens, K. R. Schenk-Hoppé, “Local stability analysis of a stochastic evolutionary financial market model with a risk-free asset”, Math. Financ. Econ., 5:3 (2011), 185–202 | DOI | MR | Zbl

[12] R. Fernholz, I. Karatzas, C. Kardaras, “Diversity and relative arbitrage in equity markets”, Finance Stoch., 9:1 (2005), 1–27 | DOI | MR | Zbl

[13] N. H. Hakansson, W. T. Ziemba, “Capital growth theory”, Finance, Handb. Oper. Res. Manage. Sci., 9, Elsevier, Amsterdam, 1995, 65–86 | DOI | Zbl

[14] T. Holtfort, “From standard to evolutionary finance: a literature survey”, Manag. Rev. Q., 69:2 (2019), 207–232 | DOI

[15] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl

[16] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl

[17] I. Karatzas, C. Kardaras, Portfolio theory and arbitrage: a course in mathematical finance, Grad. Stud. Math., 214, Amer. Math. Soc., Providence, RI, 2021, xv+309 pp. | DOI | MR | Zbl

[18] C. Kardaras, “Balance, growth and diversity of financial markets”, Ann. Finance, 4:3 (2008), 369–397 | DOI | Zbl

[19] J. L. Kelly, Jr., “A new interpretation of information rate”, Bell System Tech. J., 35:4 (1956), 917–926 | DOI | MR

[20] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Acad. Publ., Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl

[21] L. C. MacLean, E. O. Thorp, W. T. Ziemba, The Kelly capital growth investment criterion. Theory and practice, World Sci. Handb. Financ. Econ. Ser., 3, World Sci. Publ., Singapore, 2011, xxvi+853 pp. | DOI

[22] J. Maynard Smith, “The theory of games and the evolution of animal conflicts”, J. Theoret. Biol., 47:1 (1974), 209–221 | DOI | MR

[23] J. Maynard Smith, G. R. Price, “The logic of animal conflict”, Nature, 246:5427 (1973), 15–18 | DOI | Zbl

[24] J. Palczewski, K. R. Schenk-Hoppé, “Market selection of constant proportions investment strategies in continuous time”, J. Math. Econom., 46:2 (2010), 248–266 | DOI | MR | Zbl

[25] E. Platen, D. Heath, A benchmark approach to quantitative finance, Springer Finance, Springer-Verlag, Berlin, 2006, xvi+700 pp. | DOI | MR | Zbl

[26] A. Sandroni, “Do markets favor agents able to make accurate predictions?”, Econometrica, 68:6 (2000), 1303–1341 | DOI | MR | Zbl

[27] Hongjun Yan, “Natural selection in financial markets: does it work?”, Manag. Sci., 54:11 (2008), 1935–1950 | DOI | Zbl

[28] Jianfeng Zhang, Backward stochastic differential equations. From linear to fully nonlinear theory, Probab. Theory Stoch. Model., 86, Springer, New York, 2017, xv+386 pp. | DOI | MR | Zbl

[29] M. Zhitlukhin, “Survival investment strategies in a continuous-time market model with competition”, Int. J. Theor. Appl. Finance, 24:1 (2021), 2150001, 24 pp. | DOI | MR | Zbl

[30] M. Zhitlukhin, “A continuous-time asset market game with short-lived assets”, Finance Stoch., 26:3 (2022), 587–630 | DOI | MR | Zbl