Mots-clés : martingales
@article{TVP_2024_69_2_a3,
author = {M. V. Zhitlukhin},
title = {Optimal growth strategies in a stochastic market model with endogenous prices},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {256--271},
year = {2024},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/}
}
M. V. Zhitlukhin. Optimal growth strategies in a stochastic market model with endogenous prices. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 256-271. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a3/
[1] P. H. Algoet, T. M. Cover, “Asymptotic optimality and asymptotic equipartition properties of log-optimum investment”, Ann. Probab., 16:2 (1988), 876–898 | DOI | MR | Zbl
[2] R. Amir, I. V. Evstigneev, T. Hens, Le Xu, “Evolutionary finance and dynamic games”, Math. Financ. Econ., 5:3 (2011), 161–184 | DOI | MR | Zbl
[3] R. Amir, I. V. Evstigneev, T. Hens, V. Potapova, K. R. Schenk-Hoppé, “Evolution in pecunia”, Proc. Natl. Acad. Sci. USA, 118:26 (2021), e2016514118, 8 pp. | DOI
[4] L. Blume, D. Easley, “If you're so smart, why aren't you rich? Belief selection in complete and incomplete markets”, Econometrica, 74:4 (2006), 929–966 | DOI | MR | Zbl
[5] J. Borovička, “Survival and long-run dynamics with heterogeneous beliefs under recursive preferences”, J. Polit. Econ., 128:1 (2020), 206–251 | DOI
[6] L. Breiman, “Optimal gambling systems for favorable games”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, v. 1, Univ. of California Press, Berkeley–Los Angeles, CA, 1961, 65–78 | MR | Zbl
[7] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl
[8] Y. Drokin, M. Zhitlukhin, “Relative growth optimal strategies in an asset market game”, Ann. Finance, 16:4 (2020), 529–546 | DOI | MR | Zbl
[9] I. Evstigneev, T. Hens, V. Potapova, K. R. Schenk-Hoppé, “Behavioral equilibrium and evolutionary dynamics in asset markets”, J. Math. Econom., 91 (2020), 121–135 | DOI | MR | Zbl
[10] I. V. Evstigneev, T. Hens, K. R. Schenk-Hoppé, “Evolutionary stable stock markets”, Econom. Theory, 27:2 (2006), 449–468 | DOI | MR | Zbl
[11] I. V. Evstigneev, T. Hens, K. R. Schenk-Hoppé, “Local stability analysis of a stochastic evolutionary financial market model with a risk-free asset”, Math. Financ. Econ., 5:3 (2011), 185–202 | DOI | MR | Zbl
[12] R. Fernholz, I. Karatzas, C. Kardaras, “Diversity and relative arbitrage in equity markets”, Finance Stoch., 9:1 (2005), 1–27 | DOI | MR | Zbl
[13] N. H. Hakansson, W. T. Ziemba, “Capital growth theory”, Finance, Handb. Oper. Res. Manage. Sci., 9, Elsevier, Amsterdam, 1995, 65–86 | DOI | Zbl
[14] T. Holtfort, “From standard to evolutionary finance: a literature survey”, Manag. Rev. Q., 69:2 (2019), 207–232 | DOI
[15] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl
[16] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[17] I. Karatzas, C. Kardaras, Portfolio theory and arbitrage: a course in mathematical finance, Grad. Stud. Math., 214, Amer. Math. Soc., Providence, RI, 2021, xv+309 pp. | DOI | MR | Zbl
[18] C. Kardaras, “Balance, growth and diversity of financial markets”, Ann. Finance, 4:3 (2008), 369–397 | DOI | Zbl
[19] J. L. Kelly, Jr., “A new interpretation of information rate”, Bell System Tech. J., 35:4 (1956), 917–926 | DOI | MR
[20] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Acad. Publ., Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl
[21] L. C. MacLean, E. O. Thorp, W. T. Ziemba, The Kelly capital growth investment criterion. Theory and practice, World Sci. Handb. Financ. Econ. Ser., 3, World Sci. Publ., Singapore, 2011, xxvi+853 pp. | DOI
[22] J. Maynard Smith, “The theory of games and the evolution of animal conflicts”, J. Theoret. Biol., 47:1 (1974), 209–221 | DOI | MR
[23] J. Maynard Smith, G. R. Price, “The logic of animal conflict”, Nature, 246:5427 (1973), 15–18 | DOI | Zbl
[24] J. Palczewski, K. R. Schenk-Hoppé, “Market selection of constant proportions investment strategies in continuous time”, J. Math. Econom., 46:2 (2010), 248–266 | DOI | MR | Zbl
[25] E. Platen, D. Heath, A benchmark approach to quantitative finance, Springer Finance, Springer-Verlag, Berlin, 2006, xvi+700 pp. | DOI | MR | Zbl
[26] A. Sandroni, “Do markets favor agents able to make accurate predictions?”, Econometrica, 68:6 (2000), 1303–1341 | DOI | MR | Zbl
[27] Hongjun Yan, “Natural selection in financial markets: does it work?”, Manag. Sci., 54:11 (2008), 1935–1950 | DOI | Zbl
[28] Jianfeng Zhang, Backward stochastic differential equations. From linear to fully nonlinear theory, Probab. Theory Stoch. Model., 86, Springer, New York, 2017, xv+386 pp. | DOI | MR | Zbl
[29] M. Zhitlukhin, “Survival investment strategies in a continuous-time market model with competition”, Int. J. Theor. Appl. Finance, 24:1 (2021), 2150001, 24 pp. | DOI | MR | Zbl
[30] M. Zhitlukhin, “A continuous-time asset market game with short-lived assets”, Finance Stoch., 26:3 (2022), 587–630 | DOI | MR | Zbl