On limit theorems for the distribution of the maximal element in a sequence of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 233-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the distribution of the maximal element $\overline{\xi}_n$ of a sequence of independent random variables $\xi_1,\dots,\xi_n$ and not only for them. The presented approach is more transparent (in our opinion) than the one used before. We consider four classes of distributions with right-unbounded supports and find limit theorems (in an explicit form) of the distribution of $\overline{\xi}_n$ for them. Earlier, only two classes of right-unbounded distributions were considered, and it was assumed a priori that the normalization of $\overline{\xi}_n$ is linear; in addition, the components of the normalization (in their explicit form) were unknown. For the two new classes, the required normalization turns our to be nonlinear. Results of this kind are also obtained for four classes of distributions with right-bounded support, which are analogues of the above four right-unbounded distributions (earlier, only the class of distributions with right-bounded support was considered). Some extensions of these results are obtained.
Keywords: asymptotically invertible distribution, slowly decreasing tails, rapidly decreasing tails, intermediate class.
@article{TVP_2024_69_2_a2,
     author = {A. A. Borovkov and E. I. Prokopenko},
     title = {On limit theorems for the distribution of the maximal element in a~sequence of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {233--255},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - E. I. Prokopenko
TI  - On limit theorems for the distribution of the maximal element in a sequence of random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 233
EP  - 255
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/
LA  - ru
ID  - TVP_2024_69_2_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A E. I. Prokopenko
%T On limit theorems for the distribution of the maximal element in a sequence of random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 233-255
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/
%G ru
%F TVP_2024_69_2_a2
A. A. Borovkov; E. I. Prokopenko. On limit theorems for the distribution of the maximal element in a sequence of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 233-255. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/

[1] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR | Zbl

[2] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl

[3] A. Gut, Probability: a graduate course, Springer Texts Statist., Springer, New York, 2005, xxiv+603 pp. | DOI | MR | Zbl

[4] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl

[5] A. A. Balkema, L. de Haan, “On R. Von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43:4 (1972), 1352–1354 | DOI | MR | Zbl

[6] M. R. Leadbetter, “On extreme values in stationary sequences”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 28 (1974), 289–303 | DOI | MR | Zbl

[7] G. L. O'Brien, “Limit theorems for the maximum term of a stationary process”, Ann. Probab., 2:3 (1974), 540–545 | DOI | MR | Zbl

[8] H. Rootzén, “Maxima and exceedances of stationary Markov chains”, Adv. in Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl

[9] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl

[10] D. L. Iglehart, “Extreme values in the GI/G/1 queue”, Ann. Math. Statist., 43:2 (1972), 627–635 | DOI | MR | Zbl

[11] A. A. Borovkov, “On the asymptotic approach to the change-point problem and exponential convergence rate in the ergodic theorem for Markov chains”, Theory Probab. Appl., 68:3 (2023), 370–391 | DOI | DOI | MR | Zbl