@article{TVP_2024_69_2_a2,
author = {A. A. Borovkov and E. I. Prokopenko},
title = {On limit theorems for the distribution of the maximal element in a~sequence of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {233--255},
year = {2024},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/}
}
TY - JOUR AU - A. A. Borovkov AU - E. I. Prokopenko TI - On limit theorems for the distribution of the maximal element in a sequence of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 233 EP - 255 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/ LA - ru ID - TVP_2024_69_2_a2 ER -
%0 Journal Article %A A. A. Borovkov %A E. I. Prokopenko %T On limit theorems for the distribution of the maximal element in a sequence of random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 2024 %P 233-255 %V 69 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/ %G ru %F TVP_2024_69_2_a2
A. A. Borovkov; E. I. Prokopenko. On limit theorems for the distribution of the maximal element in a sequence of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 233-255. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a2/
[1] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR | Zbl
[2] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl
[3] A. Gut, Probability: a graduate course, Springer Texts Statist., Springer, New York, 2005, xxiv+603 pp. | DOI | MR | Zbl
[4] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl
[5] A. A. Balkema, L. de Haan, “On R. Von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43:4 (1972), 1352–1354 | DOI | MR | Zbl
[6] M. R. Leadbetter, “On extreme values in stationary sequences”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 28 (1974), 289–303 | DOI | MR | Zbl
[7] G. L. O'Brien, “Limit theorems for the maximum term of a stationary process”, Ann. Probab., 2:3 (1974), 540–545 | DOI | MR | Zbl
[8] H. Rootzén, “Maxima and exceedances of stationary Markov chains”, Adv. in Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl
[9] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl
[10] D. L. Iglehart, “Extreme values in the GI/G/1 queue”, Ann. Math. Statist., 43:2 (1972), 627–635 | DOI | MR | Zbl
[11] A. A. Borovkov, “On the asymptotic approach to the change-point problem and exponential convergence rate in the ergodic theorem for Markov chains”, Theory Probab. Appl., 68:3 (2023), 370–391 | DOI | DOI | MR | Zbl