Two-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sample
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 405-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain two-sided estimates for the weighted sum of probabilities of errors in the multiple hypothesis testing problem with finite number of hypotheses on a nonhomogeneous sample of size $n$. The obtained upper and lower estimates are shown to converge to zero exponentially fast with increasing $n$ in a wide class of cases. The results obtained can be used for deriving two-sided estimates for the size of a sample required for multiple hypothesis testing.
Keywords: multiple hypothesis testing, probability inequality, two-sided estimate.
Mots-clés : total variation distance
@article{TVP_2024_69_2_a11,
     author = {M. P. Savelov},
     title = {Two-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sample},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {405--416},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a11/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Two-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sample
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 405
EP  - 416
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a11/
LA  - ru
ID  - TVP_2024_69_2_a11
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Two-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sample
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 405-416
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a11/
%G ru
%F TVP_2024_69_2_a11
M. P. Savelov. Two-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sample. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 405-416. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a11/

[1] A. A. Borovkov, Mathematical statistics, Gordon Breach Sci. Publ., Amsterdam, 1998, xxii+570 pp. | MR | Zbl | Zbl

[2] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[3] A. A. Gushchin, “On Fano's lemma and similar inequalities for the minimax risk”, Theor. Probab. Math. Statist., 67 (2003), 29–41 | MR | Zbl

[4] L. Birge, A new look at an old result: Fano's lemma, LPMA prepublication no. 632, Univ. de Paris 6 Paris 7, Paris, 2001

[5] M. P. Savelov, “Extremal characteristics of statistical criteria with given total variation distances between hypotheses”, Theory Probab. Appl., 61:3 (2017), 442–461 | DOI | DOI | MR | Zbl

[6] M. Ben-Bassat, “$f$-entropies, probability of error, and feature selection”, Inform. and Control, 39:3 (1978), 227–242 | DOI | MR | Zbl

[7] J. Golić, “On the relationship between the information measures and the Bayes probability of error”, IEEE Trans. Inform. Theory, 33:5 (1987), 681–693 | DOI | MR | Zbl

[8] J. Golić, “On the relationship between the separability measures and the Bayes probability of error”, IEEE Trans. Inform. Theory, 33:5 (1987), 694–701 | DOI | MR | Zbl

[9] J. Elton, T. P. Hill, R. P. Kertz, “Optimal-partitioning inequalities for nonatomic probability measures”, Trans. Amer. Math. Soc., 296:2 (1986), 703–725 | DOI | MR | Zbl

[10] A. Kontorovich, “Obtaining measure concentration from Markov contraction”, Markov Process. Related Fields, 18:4 (2012), 613–638 | MR | Zbl

[11] I. S. Borisov, “A note on Dobrushin's theorem and couplings in Poisson approximation in Abelian groups”, Theory Probab. Appl., 48:3 (2004), 521–528 | DOI | DOI | MR | Zbl

[12] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. | DOI | MR | MR | Zbl

[13] L. Reyzin, A note on the statistical difference of small direct products, Boston Univ. Computer Sci. Tech. Rep. BUCS-TR-2004-032, 2004, 6 pp. https://www.cs.bu.edu/fac/reyzin/statdiff.html

[14] R. Renner, On the variational distance of independently repeated experiments, 2005, 8 pp., arXiv: cs/0509013

[15] A. M. Zubkov, “Novye otsenki rasstoyaniya po variatsii mezhdu dvumya raspredeleniyami vyborki”, Matem. vopr. kriptogr., 9:3 (2018), 45–60 | DOI | MR | Zbl

[16] A. M. Zubkov, “Otsenki rasstoyaniya po variatsii mezhdu raspredeleniyami dvukh naborov nezavisimykh sluchainykh velichin”, Matem. vopr. kriptogr., 11:3 (2020), 21–29 | DOI | MR | Zbl

[17] V. M. Zolotarev, “Probability metrics”, Theory Probab. Appl., 28:2 (1984), 278–302 | DOI | MR | Zbl

[18] A. Sahai, S. Vadhan, “A complete problem for statistical zero knowledge”, J. ACM, 50:2 (2003), 196–249 | DOI | MR | Zbl

[19] K. Behnen, G. Neuhaus, “A central limit theorem under contiguous alternatives”, Ann. Statist., 3:6 (1975), 1349–1353 | DOI | MR | Zbl

[20] W. Sendler, “A note on the proof of the zero-one law of Blum and Pathak”, Ann. Probab., 3:6 (1975), 1055–1058 | DOI | MR | Zbl