On an example of expectation evaluation
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 393-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the distribution of the maximal element $\overline{\xi}_n$ of a sequence of (possibly) independent random variables $\xi_1,\dots,\xi_n$. A formula for evaluation of a random variable expectation based on a quantile function is considered. This formula is applied to evaluation of the expectation for a nondecreasing function of a random variable transformed via its distribution function. The case of a discontinuous distribution function is the most interesting. As a corollary, we refine an example proposed in the author's previous article [Theory Probab. Appl., 68 (2023), pp. 392–410].
Keywords: expectation, quantile function, transformation of a variable using its distribution function, application to statistical estimates of mutual information.
@article{TVP_2024_69_2_a10,
     author = {Al. V. Bulinski},
     title = {On an example of expectation evaluation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {393--404},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a10/}
}
TY  - JOUR
AU  - Al. V. Bulinski
TI  - On an example of expectation evaluation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 393
EP  - 404
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a10/
LA  - ru
ID  - TVP_2024_69_2_a10
ER  - 
%0 Journal Article
%A Al. V. Bulinski
%T On an example of expectation evaluation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 393-404
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a10/
%G ru
%F TVP_2024_69_2_a10
Al. V. Bulinski. On an example of expectation evaluation. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 393-404. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a10/

[1] A. S. Shvedov, “Quantile function of a fuzzy random variable and an expression for expectations”, Math. Notes, 100:3 (2016), 477–481 | DOI | DOI | MR | Zbl

[2] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.

[3] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[4] J. Yeh, Real analysis. Theory of measure and integration, 3rd ed., World Sci. Publ., Hackensack, NJ, 2014, xxiii+815 pp. | DOI | MR | Zbl

[5] A. Stark, E. Seneta, “A. N. Kolmogorov's defence of Mendelism”, Genet. Mol. Biol., 34:2 (2011), 177–186 | DOI

[6] D. S. Dimitrova, V. K. Kaishev, Senren Tan, “Computing the Kolmogorov–Smirnov distribution when the underlying CDF is purely discrete, mixed, or continuous”, J. Stat. Softw., 95:10 (2020), 1–42 | DOI

[7] A. V. Bulinski, “On relevant features selection based on information theory”, Theory Probab. Appl., 68:3 (2023), 392–410 | DOI | DOI | MR | Zbl

[8] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1997, xii+523 pp. | DOI | MR | Zbl

[9] C. Hipp, L. Mattner, “On the normal approximation to symmetric binomial distributions”, Teoriya veroyatn. i ee primen., 52:3 (2007), 610–617 ; Theory Probab. Appl., 52:3 (2008), 516–523 | DOI | MR | Zbl | DOI