Keywords: power of a criterion, consistency
@article{TVP_2024_69_2_a1,
author = {P. Babilua and \`E. A. Nadaraya},
title = {On one nonparametric estimate of the {Poisson} regression function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {218--232},
year = {2024},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/}
}
P. Babilua; È. A. Nadaraya. On one nonparametric estimate of the Poisson regression function. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/
[1] S. Efromovich, Nonparametric curve estimation. Methods, theory, and applications, Springer Ser. Statist., Springer-Verlag, New York, 1999, xiv+411 pp. | DOI | MR | Zbl
[2] M. Kohler, A. Krzy.{z}ak, “Asymptotic confidence intervals for Poisson regression”, J. Multivariate Anal., 98:5 (2007), 1072–1094 | DOI | MR | Zbl
[3] Chang Ha Hwang, Joo Yong Shim, “Semiparametric kernel Poisson regression for longitudinal count data”, Commun. Korean Math. Soc, 15:6 (2008), 1003–1011
[4] Y. Pawitan, F. O'Sullivan, “Data-dependent bandwidth selection for emission computed tomography reconstruction”, IEEE Trans. Med. Imaging, 12:2 (1993), 167–172 | DOI
[5] E. D. Kolaczyk, “Nonparametric estimation of gamma-ray burst intensities using Haar wavelets”, Astrophys. J., 483:1 (1997), 340–349 | DOI
[6] E. A. Nadaraya, “On estimating regression”, Theory Probab. Appl., 9:1 (1964), 141–142 | DOI | MR | Zbl
[7] G. S. Watson, “Smooth regression analysis”, Sankhyā Ser. A, 26 (1964), 359–372 | MR | Zbl
[8] E. Nadaraya, P. Babilua, G. Sokhadze, “Estimation of a distribution function by an indirect sample”, Ukr. matem. zhurn., 62:12 (2010), 1642–1658 ; Ukrainian Math. J., 62:12 (2011), 1906–1924 | Zbl | DOI | MR
[9] R. Sh. Liptser, A. N. Shiryayev, “A functional central limit theorem for semimartingales”, Theory Probab. Appl., 25:4 (1981), 667–688 | DOI | MR | Zbl
[10] J. D. Hart, Th. E. Wehrly, “Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models”, J. Amer. Statist. Assoc., 87:420 (1992), 1018–1024 | DOI | MR | Zbl
[11] R. M. Absava, E. A. Nadaraya, Nekotorye zadachi teorii neparametricheskogo otsenivaniya funktsionalnykh kharakteristik zakona raspredeleniya nablyudenii, Izd-vo Tbilisskogo un-ta, Tbilisi, 2008, 247 pp.
[12] P. K. Babilua, E. A. Nadaraya, “On nonparametric kernel-type estimate of the Bernoulli regression function”, Applications of mathematics and informatics in natural sciences and engineering. AMINSE 2019, Springer Proc. Math. Stat., 334, Springer, Cham, 2020, 19–36 | DOI | MR | Zbl