On one nonparametric estimate of the Poisson regression function
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 218-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The limiting distribution of the integral square deviation of a nonparametric kernel-type estimator for the Poisson regression function is established. A criterion for testing the hypothesis on the Poisson regression function is constructed. The power asymptotic of the constructed criterion is studied for certain types of close alternatives.
Mots-clés : Poisson regression function, limit distribution.
Keywords: power of a criterion, consistency
@article{TVP_2024_69_2_a1,
     author = {P. Babilua and \`E. A. Nadaraya},
     title = {On one nonparametric estimate of the {Poisson} regression function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {218--232},
     year = {2024},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/}
}
TY  - JOUR
AU  - P. Babilua
AU  - È. A. Nadaraya
TI  - On one nonparametric estimate of the Poisson regression function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 218
EP  - 232
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/
LA  - ru
ID  - TVP_2024_69_2_a1
ER  - 
%0 Journal Article
%A P. Babilua
%A È. A. Nadaraya
%T On one nonparametric estimate of the Poisson regression function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 218-232
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/
%G ru
%F TVP_2024_69_2_a1
P. Babilua; È. A. Nadaraya. On one nonparametric estimate of the Poisson regression function. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/TVP_2024_69_2_a1/

[1] S. Efromovich, Nonparametric curve estimation. Methods, theory, and applications, Springer Ser. Statist., Springer-Verlag, New York, 1999, xiv+411 pp. | DOI | MR | Zbl

[2] M. Kohler, A. Krzy.{z}ak, “Asymptotic confidence intervals for Poisson regression”, J. Multivariate Anal., 98:5 (2007), 1072–1094 | DOI | MR | Zbl

[3] Chang Ha Hwang, Joo Yong Shim, “Semiparametric kernel Poisson regression for longitudinal count data”, Commun. Korean Math. Soc, 15:6 (2008), 1003–1011

[4] Y. Pawitan, F. O'Sullivan, “Data-dependent bandwidth selection for emission computed tomography reconstruction”, IEEE Trans. Med. Imaging, 12:2 (1993), 167–172 | DOI

[5] E. D. Kolaczyk, “Nonparametric estimation of gamma-ray burst intensities using Haar wavelets”, Astrophys. J., 483:1 (1997), 340–349 | DOI

[6] E. A. Nadaraya, “On estimating regression”, Theory Probab. Appl., 9:1 (1964), 141–142 | DOI | MR | Zbl

[7] G. S. Watson, “Smooth regression analysis”, Sankhyā Ser. A, 26 (1964), 359–372 | MR | Zbl

[8] E. Nadaraya, P. Babilua, G. Sokhadze, “Estimation of a distribution function by an indirect sample”, Ukr. matem. zhurn., 62:12 (2010), 1642–1658 ; Ukrainian Math. J., 62:12 (2011), 1906–1924 | Zbl | DOI | MR

[9] R. Sh. Liptser, A. N. Shiryayev, “A functional central limit theorem for semimartingales”, Theory Probab. Appl., 25:4 (1981), 667–688 | DOI | MR | Zbl

[10] J. D. Hart, Th. E. Wehrly, “Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models”, J. Amer. Statist. Assoc., 87:420 (1992), 1018–1024 | DOI | MR | Zbl

[11] R. M. Absava, E. A. Nadaraya, Nekotorye zadachi teorii neparametricheskogo otsenivaniya funktsionalnykh kharakteristik zakona raspredeleniya nablyudenii, Izd-vo Tbilisskogo un-ta, Tbilisi, 2008, 247 pp.

[12] P. K. Babilua, E. A. Nadaraya, “On nonparametric kernel-type estimate of the Bernoulli regression function”, Applications of mathematics and informatics in natural sciences and engineering. AMINSE 2019, Springer Proc. Math. Stat., 334, Springer, Cham, 2020, 19–36 | DOI | MR | Zbl