Hellinger distance estimation for nonregular spectra
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 188-200

Voir la notice de l'article provenant de la source Math-Net.Ru

For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\theta,f_{\theta+h})$ of the form $O(h^\alpha)$, we give $1/\alpha$-consistent asymptotics of the maximum likelihood estimator of $\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\widehat{\theta}=\operatorname{arg}\min_\theta T(f_\theta,\widehat{g}_n)$, where $\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\widehat\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.
Keywords: Gaussian stationary process, Hellinger distance estimator, nonregular spectra, asymptotically efficient, robust.
@article{TVP_2024_69_1_a9,
     author = {M. Taniguchi and Y. Xue},
     title = {Hellinger distance estimation for nonregular spectra},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {188--200},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a9/}
}
TY  - JOUR
AU  - M. Taniguchi
AU  - Y. Xue
TI  - Hellinger distance estimation for nonregular spectra
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 188
EP  - 200
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a9/
LA  - ru
ID  - TVP_2024_69_1_a9
ER  - 
%0 Journal Article
%A M. Taniguchi
%A Y. Xue
%T Hellinger distance estimation for nonregular spectra
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 188-200
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a9/
%G ru
%F TVP_2024_69_1_a9
M. Taniguchi; Y. Xue. Hellinger distance estimation for nonregular spectra. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 188-200. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a9/