@article{TVP_2024_69_1_a8,
author = {Yu. Dong and L. Vostrikova},
title = {Utility maximization of the exponential {L\'evy} switching models},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {161--187},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/}
}
Yu. Dong; L. Vostrikova. Utility maximization of the exponential Lévy switching models. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 161-187. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/
[1] A. Aksamit, M. Jeanblanc, Enlargement of filtration with finance in view, SpringerBriefs Quant. Finance, Springer, Cham, 2017, x+150 pp. | DOI | MR | Zbl
[2] Jun Cai, “A Markov model of switching-regime ARCH”, J. Bus. Econom. Statist., 12:3 (1994), 309–316 | DOI
[3] G. Callegaro, M. Jeanblanc, B. Zargari, “Carthaginian enlargement of filtrations”, ESAIM Probab. Stat., 17 (2013), 550–566 | DOI | MR | Zbl
[4] S. Cawston, L. Vostrikova, “An $f$-divergence approach for optimal portfolios in exponential Lévy models”, Inspired by finance, Springer, Cham, 2014, 83–101 | DOI | MR | Zbl
[5] S. Cawston, L. Vostrikova, “Lévy preservation and associated properties for the $f$-divergence minimal equivalent martingale measures”, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, 163–196 | DOI | MR | Zbl
[6] S. Cawston, L. Vostrikova, “$f$-divergence minimal martingale measures and optimal portfolios for exponential Lévy models with a change-point”, Seminar on stochastic analysis, random fields and applications VII, Progr. Probab., 67, Birkhäuser/Springer, Basel, 2013, 305–336 | DOI | MR | Zbl
[7] T. Choulli, C. Stricker, “Minimal entropy–Hellinger martingale measure in incomplete markets”, Math. Finance, 15:3 (2005), 465–490 | DOI | MR | Zbl
[8] T. Choulli, C. Stricker, Jia Li, “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR | Zbl
[9] K. Chourdakis, Switching Lévy models in continuous time: Finite distributions and option pricing, SSRN, Univ. Essex, CCFEA, Working paper, 2005, 39 pp. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=838924
[10] R. J. Elliott, C.-J. U. Osakwe, “Option pricing for pure jump processes with Markov switching compensators”, Finance Stoch., 10:2 (2006), 250–275 | DOI | MR | Zbl
[11] R. J. Elliott, Tak Kuen Siu, Leunglung Chan, “Pricing volatility swaps under Heston's stochastic volatility model with regime switching”, Appl. Math. Finance, 14:1 (2007), 41–62 | DOI | MR | Zbl
[12] M. Escobar, D. Neykova, R. Zagst, “Portfolio optimization in affine models with Markov switching”, Int. J. Theor. Appl. Finance, 18:5 (2015), 1550030, 46 pp. | DOI | MR | Zbl
[13] F. Esche, M. Schweizer, “Minimal entropy preserves the Lévy property: how and why”, Stochastic Process. Appl., 115:2 (2005), 299–327 | DOI | MR | Zbl
[14] A. Ellanskaya, L. Vostrikova, “Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities”, Stokhasticheskoe ischislenie, martingaly i ikh primeneniya, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Alberta Nikolaevicha Shiryaeva, Trudy MIAN, 287, MAIK «Nauka/Interperiodika», M., 2014, 75–102 | DOI | MR
[15] P. François, G. Gautier, F. Godin, “Optimal hedging when the underlying asset follows a regime-switching Markov process”, European J. Oper. Res., 237:1 (2014), 312–322 | DOI | MR | Zbl
[16] T. Fujiwara, Y. Miyahara, “The minimal entropy martingale measures for geometric Lévy processes”, Finance Stoch., 7:4 (2003), 509–531 | DOI | MR | Zbl
[17] T. Goll, L. Rüschendorf, “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl
[18] D. Gasbarra, E. Valkeila, L. Vostrikova, “Enlargement of filtration and additional information in pricing models: Bayesian approach”, From stochastic calculus to mathematical finance, Springer-Verlag, Berlin, 2006, 257–285 | DOI | MR | Zbl
[19] J. D. Hamilton, R. Susmel, “Autoregressive conditional heteroskedasticity and changes in regime”, J. Econometrics, 64:1-2 (1994), 307–333 | DOI | Zbl
[20] D. Hainaut, Switching Lévy processes: a toolbox for financial applications, Working paper, 2010
[21] F. Hubalek, C. Sgarra, “Esscher transforms and the minimal entropy martingale measure for exponential Lévy models”, Quant. Finance, 6:2 (2006), 125–145 | DOI | MR | Zbl
[22] K. R. Jakson, S. Jaimungal, V. Surkov, “Option pricing with regime switching Lévy processes using Fourier space time stepping”, FEA 2007: Proceedings of the Fourth IASTED international conference on financial engineering and applications (Berkeley, CA, 2007), ACTA Press, Anaheim, CA, 2007, 92–97
[23] J. Jacod, “Grossissement initial, hypothèse (H') et théorème de Girsanov”, Grossissements de filtrations: exemples et applications, Lecture Notes in Math., 1118, Springer, Berlin, 1985, 15–35 | DOI | Zbl
[24] Zh. Zhakod, A. N. Shiryaev, Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Teoriya Veroyatn. Matem. Statist., 47, 48, Nauka, M., 1994, 544 s., 368 pp. ; J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | MR | MR | Zbl | DOI | MR | Zbl
[25] M. Jeanblanc, S. Klöppel, Y. Miyahara, “Minimal $f^q$-martingale measures for exponential Lévy processes”, Ann. Appl. Probab., 17:5-6 (2007), 1615–1638 | DOI | MR | Zbl
[26] E. I. Kolomiets, “Sootnosheniya mezhdu tripletami lokalnykh kharakteristik semimartingalov”, UMN, 39:4(238) (1984), 163–164 | MR | Zbl
[27] M. Konikov, D. B. Madan, “Option pricing using variance gamma Markov chain”, Rev. Deriv. Res., 5:1 (2002), 81–115 | DOI | Zbl
[28] Y. Miyahara, “Minimal entropy martingale measures of jump type price processes in incomplete assets markets”, Asia-Pac. Financ. Mark., 6:2 (1999), 97–113 | DOI | Zbl
[29] M. K. P. So, K. Lam, W. K. Li, “A stochastic volatility model with Markov switching”, J. Bus. Econom. Statist., 16:2 (1998), 244–253 | DOI | MR
[30] L. Yu. Vostrikova, “Maksimizatsiya ozhidaemoi poleznosti dlya eksponentsialnykh modelei Levi s optsionom i informatsionnye protsessy”, Teoriya veroyatn. i ee primen., 61:1 (2016), 26–52 ; L. Vostrikova, “Expected utility maximization for exponential Lévy models with option and information processes”, Theory Probab. Appl., 61:1 (2017), 107–128 | DOI | MR | Zbl | DOI