Utility maximization of the exponential L\'evy switching models
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 161-187
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to maximization of HARA (hyperbolic absolute risk
aversion) utilities of the exponential Lévy switching processes on a finite
time interval via the dual method. The description of all $f$-divergence minimal
martingale measures and the expression of their Radon–Nikodým densities
involving the Hellinger and Kulback–Leibler processes are given. The optimal
strategies in progressively enlarged filtration for the maximization of HARA
utilities as well as the values of the corresponding maximal expected utilities
are derived. As an example, the Brownian switching model is presented with
financial interpretations of the results via the value process.
Keywords:
Lévy switching models, utility maximization, dual approach, $f$-divergence minimal martingale measure, optimal strategy.
@article{TVP_2024_69_1_a8,
author = {Yu. Dong and L. Vostrikova},
title = {Utility maximization of the exponential {L\'evy} switching models},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {161--187},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/}
}
Yu. Dong; L. Vostrikova. Utility maximization of the exponential L\'evy switching models. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 161-187. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/