Utility maximization of the exponential Lévy switching models
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 161-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to maximization of HARA (hyperbolic absolute risk aversion) utilities of the exponential Lévy switching processes on a finite time interval via the dual method. The description of all $f$-divergence minimal martingale measures and the expression of their Radon–Nikodým densities involving the Hellinger and Kulback–Leibler processes are given. The optimal strategies in progressively enlarged filtration for the maximization of HARA utilities as well as the values of the corresponding maximal expected utilities are derived. As an example, the Brownian switching model is presented with financial interpretations of the results via the value process.
Keywords: Lévy switching models, utility maximization, dual approach, $f$-divergence minimal martingale measure, optimal strategy.
@article{TVP_2024_69_1_a8,
     author = {Yu. Dong and L. Vostrikova},
     title = {Utility maximization of the exponential {L\'evy} switching models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {161--187},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/}
}
TY  - JOUR
AU  - Yu. Dong
AU  - L. Vostrikova
TI  - Utility maximization of the exponential Lévy switching models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 161
EP  - 187
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/
LA  - ru
ID  - TVP_2024_69_1_a8
ER  - 
%0 Journal Article
%A Yu. Dong
%A L. Vostrikova
%T Utility maximization of the exponential Lévy switching models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 161-187
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/
%G ru
%F TVP_2024_69_1_a8
Yu. Dong; L. Vostrikova. Utility maximization of the exponential Lévy switching models. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 161-187. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a8/

[1] A. Aksamit, M. Jeanblanc, Enlargement of filtration with finance in view, SpringerBriefs Quant. Finance, Springer, Cham, 2017, x+150 pp. | DOI | MR | Zbl

[2] Jun Cai, “A Markov model of switching-regime ARCH”, J. Bus. Econom. Statist., 12:3 (1994), 309–316 | DOI

[3] G. Callegaro, M. Jeanblanc, B. Zargari, “Carthaginian enlargement of filtrations”, ESAIM Probab. Stat., 17 (2013), 550–566 | DOI | MR | Zbl

[4] S. Cawston, L. Vostrikova, “An $f$-divergence approach for optimal portfolios in exponential Lévy models”, Inspired by finance, Springer, Cham, 2014, 83–101 | DOI | MR | Zbl

[5] S. Cawston, L. Vostrikova, “Lévy preservation and associated properties for the $f$-divergence minimal equivalent martingale measures”, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, 163–196 | DOI | MR | Zbl

[6] S. Cawston, L. Vostrikova, “$f$-divergence minimal martingale measures and optimal portfolios for exponential Lévy models with a change-point”, Seminar on stochastic analysis, random fields and applications VII, Progr. Probab., 67, Birkhäuser/Springer, Basel, 2013, 305–336 | DOI | MR | Zbl

[7] T. Choulli, C. Stricker, “Minimal entropy–Hellinger martingale measure in incomplete markets”, Math. Finance, 15:3 (2005), 465–490 | DOI | MR | Zbl

[8] T. Choulli, C. Stricker, Jia Li, “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR | Zbl

[9] K. Chourdakis, Switching Lévy models in continuous time: Finite distributions and option pricing, SSRN, Univ. Essex, CCFEA, Working paper, 2005, 39 pp. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=838924

[10] R. J. Elliott, C.-J. U. Osakwe, “Option pricing for pure jump processes with Markov switching compensators”, Finance Stoch., 10:2 (2006), 250–275 | DOI | MR | Zbl

[11] R. J. Elliott, Tak Kuen Siu, Leunglung Chan, “Pricing volatility swaps under Heston's stochastic volatility model with regime switching”, Appl. Math. Finance, 14:1 (2007), 41–62 | DOI | MR | Zbl

[12] M. Escobar, D. Neykova, R. Zagst, “Portfolio optimization in affine models with Markov switching”, Int. J. Theor. Appl. Finance, 18:5 (2015), 1550030, 46 pp. | DOI | MR | Zbl

[13] F. Esche, M. Schweizer, “Minimal entropy preserves the Lévy property: how and why”, Stochastic Process. Appl., 115:2 (2005), 299–327 | DOI | MR | Zbl

[14] A. Ellanskaya, L. Vostrikova, “Utility maximisation and utility indifference price for exponential semi-martingale models and HARA utilities”, Stokhasticheskoe ischislenie, martingaly i ikh primeneniya, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Alberta Nikolaevicha Shiryaeva, Trudy MIAN, 287, MAIK «Nauka/Interperiodika», M., 2014, 75–102 | DOI | MR

[15] P. François, G. Gautier, F. Godin, “Optimal hedging when the underlying asset follows a regime-switching Markov process”, European J. Oper. Res., 237:1 (2014), 312–322 | DOI | MR | Zbl

[16] T. Fujiwara, Y. Miyahara, “The minimal entropy martingale measures for geometric Lévy processes”, Finance Stoch., 7:4 (2003), 509–531 | DOI | MR | Zbl

[17] T. Goll, L. Rüschendorf, “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl

[18] D. Gasbarra, E. Valkeila, L. Vostrikova, “Enlargement of filtration and additional information in pricing models: Bayesian approach”, From stochastic calculus to mathematical finance, Springer-Verlag, Berlin, 2006, 257–285 | DOI | MR | Zbl

[19] J. D. Hamilton, R. Susmel, “Autoregressive conditional heteroskedasticity and changes in regime”, J. Econometrics, 64:1-2 (1994), 307–333 | DOI | Zbl

[20] D. Hainaut, Switching Lévy processes: a toolbox for financial applications, Working paper, 2010

[21] F. Hubalek, C. Sgarra, “Esscher transforms and the minimal entropy martingale measure for exponential Lévy models”, Quant. Finance, 6:2 (2006), 125–145 | DOI | MR | Zbl

[22] K. R. Jakson, S. Jaimungal, V. Surkov, “Option pricing with regime switching Lévy processes using Fourier space time stepping”, FEA 2007: Proceedings of the Fourth IASTED international conference on financial engineering and applications (Berkeley, CA, 2007), ACTA Press, Anaheim, CA, 2007, 92–97

[23] J. Jacod, “Grossissement initial, hypothèse (H') et théorème de Girsanov”, Grossissements de filtrations: exemples et applications, Lecture Notes in Math., 1118, Springer, Berlin, 1985, 15–35 | DOI | Zbl

[24] Zh. Zhakod, A. N. Shiryaev, Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Teoriya Veroyatn. Matem. Statist., 47, 48, Nauka, M., 1994, 544 s., 368 pp. ; J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | MR | MR | Zbl | DOI | MR | Zbl

[25] M. Jeanblanc, S. Klöppel, Y. Miyahara, “Minimal $f^q$-martingale measures for exponential Lévy processes”, Ann. Appl. Probab., 17:5-6 (2007), 1615–1638 | DOI | MR | Zbl

[26] E. I. Kolomiets, “Sootnosheniya mezhdu tripletami lokalnykh kharakteristik semimartingalov”, UMN, 39:4(238) (1984), 163–164 | MR | Zbl

[27] M. Konikov, D. B. Madan, “Option pricing using variance gamma Markov chain”, Rev. Deriv. Res., 5:1 (2002), 81–115 | DOI | Zbl

[28] Y. Miyahara, “Minimal entropy martingale measures of jump type price processes in incomplete assets markets”, Asia-Pac. Financ. Mark., 6:2 (1999), 97–113 | DOI | Zbl

[29] M. K. P. So, K. Lam, W. K. Li, “A stochastic volatility model with Markov switching”, J. Bus. Econom. Statist., 16:2 (1998), 244–253 | DOI | MR

[30] L. Yu. Vostrikova, “Maksimizatsiya ozhidaemoi poleznosti dlya eksponentsialnykh modelei Levi s optsionom i informatsionnye protsessy”, Teoriya veroyatn. i ee primen., 61:1 (2016), 26–52 ; L. Vostrikova, “Expected utility maximization for exponential Lévy models with option and information processes”, Theory Probab. Appl., 61:1 (2017), 107–128 | DOI | MR | Zbl | DOI