Limit behavior of the order statistics on the cycle lengths of random $A$-permutations
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 148-160
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a random permutation $\tau_n$ uniformly distributed on the set of
all permutations of degree $n$ whose cycle lengths lie in a fixed set $A$
(the so-called $A$-permutations). Let $\zeta_n$ be the total number of
cycles, and let $\eta_n(1)\leq\eta_n(2)\leq\dots\leq\eta_n(\zeta_n)$ be the
ordered sample of cycle lengths of the permutation $\tau_n$. We consider
a class of sets $A$ with positive density in the set of natural numbers. We
study the asymptotic behavior of $\eta_n(m)$ with numbers $m$ in the left-hand
and middle parts of this series for a class of sets of positive asymptotic
density. A limit theorem for the rightmost terms of this series was proved by
the author of this note earlier. The study of limit properties of the
sequence $\eta_n(m)$ dates back to the paper by Shepp and Lloyd
[Trans. Amer. Math. Soc., 121 (1966), pp. 340–357] who
considered the case $A=\mathbf N$.
Keywords:
random $A$-permutation, ordered sample for cycle length of a permutation, order statistics.
@article{TVP_2024_69_1_a7,
author = {A. L. Yakymiv},
title = {Limit behavior of the order statistics on the cycle lengths of random $A$-permutations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {148--160},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a7/}
}
TY - JOUR AU - A. L. Yakymiv TI - Limit behavior of the order statistics on the cycle lengths of random $A$-permutations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 148 EP - 160 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a7/ LA - ru ID - TVP_2024_69_1_a7 ER -
A. L. Yakymiv. Limit behavior of the order statistics on the cycle lengths of random $A$-permutations. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 148-160. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a7/