Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 125-147
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{Z_n,\, n\ge 0\}$ be a branching process in an independent and
identically distributed (i.i.d.) random environment and $\{S_n,\, n\,{\ge}\,
1\}$ be the associated random walk with steps $\xi_i$. Under the Cramér
condition on $\xi_1$ and moment assumptions on a number of descendants of one particle, we know the asymptotics of the large deviation probabilities
$\mathbf{P}(\ln Z_n > x)$, where $x/n > \mu^*$. Here, $\mu^*$ is a parameter depending on the process type. We study the asymptotic behavior of
the process trajectory under the condition of a large deviation event. In
particular, we obtain a conditional functional limit theorem for the
trajectory of $(Z_{[nt]},\, t\in [0,1])$ given $\ln Z_n>x$. This result is
obtained in a more general model of linear recurrence sequence $Y_{n+1}=A_n Y_n + B_n$, $n\ge 0$, where $\{A_i\}$ is a sequence of i.i.d. random variables,
$Y_0$, $B_i$, $i\ge 0$, are possibly dependent and have different
distributions, and we need only some moment assumptions on them.
Keywords:
large deviations, functional limit theorem, branching processes, bisexual branching processes, random environment.
@article{TVP_2024_69_1_a6,
author = {A. V. Shklyaev},
title = {Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {125--147},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/}
}
TY - JOUR AU - A. V. Shklyaev TI - Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 125 EP - 147 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/ LA - ru ID - TVP_2024_69_1_a6 ER -
%0 Journal Article %A A. V. Shklyaev %T Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event %J Teoriâ veroâtnostej i ee primeneniâ %D 2024 %P 125-147 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/ %G ru %F TVP_2024_69_1_a6
A. V. Shklyaev. Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 125-147. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/