@article{TVP_2024_69_1_a6,
author = {A. V. Shklyaev},
title = {Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {125--147},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/}
}
TY - JOUR AU - A. V. Shklyaev TI - Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 125 EP - 147 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/ LA - ru ID - TVP_2024_69_1_a6 ER -
A. V. Shklyaev. Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 125-147. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/
[1] D. Buraczewski, E. Damek, T. Mikosch, Stochastic models with power-law tails. The equation $X = AX + B$, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2016, xv+320 pp. | DOI | MR | Zbl
[2] H. Kesten, “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl
[3] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1:1 (1991), 126–166 | DOI | MR | Zbl
[4] G. Alsmeyer, A. Iksanov, “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electron. J. Probab., 14 (2009), 289–313 | DOI | MR | Zbl
[5] D. Buraczewski, P. Dyszewski, “Precise large deviations for random walk in random environment”, Electron. J. Probab., 23 (2018), 114, 26 pp. | DOI | MR | Zbl
[6] A. V. Shklyaev, “Large deviations of branching process in a random environment. II”, Discrete Math. Appl., 31:6 (2021), 431–447 | DOI | DOI | MR | Zbl
[7] M. A. Struleva, E. I. Prokopenko, “Integro-local limit theorems for supercritical branching process in a random environment”, Statist. Probab. Lett., 181 (2022), 109234, 9 pp. | DOI | MR | Zbl
[8] A. V. Shklyaev, “Large deviations of branching process in a random environment”, Discrete Math. Appl., 31:4 (2021), 281–291 | DOI | DOI | MR | Zbl
[9] I. Grama, Quansheng Liu, E. Miqueu, “Berry–Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment”, Stochastic Process. Appl., 127:4 (2017), 1255–1281 | DOI | MR | Zbl
[10] A. A. Borovkov, “Convergence of measures and random processes”, Russian Math. Surveys, 31:2 (1976), 1–69 | DOI | MR | Zbl
[11] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+419 pp. | DOI | MR | Zbl | Zbl
[12] A. V. Shklyaev, “Bolshie ukloneniya vetvyaschegosya protsessa s chastitsami dvukh polov v sluchainoi srede”, Diskret. matem., 35:3 (2023), 125–142 | DOI