Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 125-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{Z_n,\, n\ge 0\}$ be a branching process in an independent and identically distributed (i.i.d.) random environment and $\{S_n,\, n\,{\ge}\, 1\}$ be the associated random walk with steps $\xi_i$. Under the Cramér condition on $\xi_1$ and moment assumptions on a number of descendants of one particle, we know the asymptotics of the large deviation probabilities $\mathbf{P}(\ln Z_n > x)$, where $x/n > \mu^*$. Here, $\mu^*$ is a parameter depending on the process type. We study the asymptotic behavior of the process trajectory under the condition of a large deviation event. In particular, we obtain a conditional functional limit theorem for the trajectory of $(Z_{[nt]},\, t\in [0,1])$ given $\ln Z_n>x$. This result is obtained in a more general model of linear recurrence sequence $Y_{n+1}=A_n Y_n + B_n$, $n\ge 0$, where $\{A_i\}$ is a sequence of i.i.d. random variables, $Y_0$, $B_i$, $i\ge 0$, are possibly dependent and have different distributions, and we need only some moment assumptions on them.
Keywords: large deviations, functional limit theorem, branching processes, bisexual branching processes, random environment.
@article{TVP_2024_69_1_a6,
     author = {A. V. Shklyaev},
     title = {Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {125--147},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 125
EP  - 147
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/
LA  - ru
ID  - TVP_2024_69_1_a6
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 125-147
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/
%G ru
%F TVP_2024_69_1_a6
A. V. Shklyaev. Conditional functional limit theorem for random reccurence sequence conditioned on large deviation event. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 125-147. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a6/

[1] D. Buraczewski, E. Damek, T. Mikosch, Stochastic models with power-law tails. The equation $X = AX + B$, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2016, xv+320 pp. | DOI | MR | Zbl

[2] H. Kesten, “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl

[3] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1:1 (1991), 126–166 | DOI | MR | Zbl

[4] G. Alsmeyer, A. Iksanov, “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electron. J. Probab., 14 (2009), 289–313 | DOI | MR | Zbl

[5] D. Buraczewski, P. Dyszewski, “Precise large deviations for random walk in random environment”, Electron. J. Probab., 23 (2018), 114, 26 pp. | DOI | MR | Zbl

[6] A. V. Shklyaev, “Large deviations of branching process in a random environment. II”, Discrete Math. Appl., 31:6 (2021), 431–447 | DOI | DOI | MR | Zbl

[7] M. A. Struleva, E. I. Prokopenko, “Integro-local limit theorems for supercritical branching process in a random environment”, Statist. Probab. Lett., 181 (2022), 109234, 9 pp. | DOI | MR | Zbl

[8] A. V. Shklyaev, “Large deviations of branching process in a random environment”, Discrete Math. Appl., 31:4 (2021), 281–291 | DOI | DOI | MR | Zbl

[9] I. Grama, Quansheng Liu, E. Miqueu, “Berry–Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment”, Stochastic Process. Appl., 127:4 (2017), 1255–1281 | DOI | MR | Zbl

[10] A. A. Borovkov, “Convergence of measures and random processes”, Russian Math. Surveys, 31:2 (1976), 1–69 | DOI | MR | Zbl

[11] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+419 pp. | DOI | MR | Zbl | Zbl

[12] A. V. Shklyaev, “Bolshie ukloneniya vetvyaschegosya protsessa s chastitsami dvukh polov v sluchainoi srede”, Diskret. matem., 35:3 (2023), 125–142 | DOI